有机化学 ›› 2022, Vol. 42 ›› Issue (12): 4078-4098.DOI: 10.6023/cjoc202208026 上一篇 下一篇
所属专题: 自由基化学专辑
综述与进展
收稿日期:
2022-08-20
修回日期:
2022-09-12
发布日期:
2022-10-14
通讯作者:
郑绿茵, 郭维
基金资助:
Lüyin Zheng(), Yihan Wang, Liuhuan Cai, Wei Guo()
Received:
2022-08-20
Revised:
2022-09-12
Published:
2022-10-14
Contact:
Lüyin Zheng, Wei Guo
Supported by:
文章分享
烯烃的双官能团化反应是当前有机合成领域的研究热点. 这些反应可以快速、经济的在烯烃的碳-碳双键(C=C)上引入两个相同或不同的基团, 从而增加分子的复杂性和应用价值. 三氟甲基对有机化合物的亲脂性、渗透性和代谢稳定性等性质有重要影响, 同时C—N键广泛存在于各种有机分子结构中. 通过烯烃的双官能团化同时构建C—CF3和C—N键, 在有机合成和药物化学领域具有重要意义. 按照不同“N”源进行分类, 综述了近年来自由基参与的烯烃C—CF3和C—N键形成反应的研究进展, 阐述了可能经历的自由基化学反应历程, 对其应用前景进行了展望.
郑绿茵, 王逸涵, 蔡刘欢, 郭维. 自由基参与的烯烃C—CF3/C—N键形成反应研究进展[J]. 有机化学, 2022, 42(12): 4078-4098.
Lüyin Zheng, Yihan Wang, Liuhuan Cai, Wei Guo. Progress in C—CF3/C—N Bond Formation Reactions of Alkenes Involving in Free Radicals[J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4078-4098.
[1] |
Hopkins, B. A.; Wolfe, J. P. Angew. Chem., Int. Ed. 2012, 51, 9886.
doi: 10.1002/anie.201205233 |
[2] |
(a) Wu, K.; Liang, Y.; Jiao, N. Molecules 2016, 21, 352.
doi: 10.3390/molecules21030352 |
(b) Yin, G.; Mu, X.; Liu, G. Acc. Chem. Res. 2016, 49, 2413.
doi: 10.1021/acs.accounts.6b00328 |
|
(c) Li, Z.-L.; Fang, G.-C.; Gu, Q.-S.; Liu, X.-Y. Chem. Soc. Rev. 2020, 49, 32.
doi: 10.1039/C9CS00681H |
|
[3] |
(a) Bégué, J.-P.; Bonnet-Delpon, D. J. Fluorine Chem. 2006, 12, 992.
pmid: 25011917 |
(b) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Asian J. 2012, 7, 1744.
doi: 10.1002/asia.201200211 pmid: 25011917 |
|
(c) Zhang, C. Org. Biomol. Chem. 2014, 12, 6580.
doi: 10.1039/c4ob00671b pmid: 25011917 |
|
[4] |
(a) Kolahdouzan, K.; Kumar, R.; Gaunt, M. J. Chem. Sci. 2020, 11, 12089.
doi: 10.1039/d0sc04853d pmid: 34094424 |
(b) Duan, P.; Zhao, H.; Yang, J.; Cao, L.; Jiang, H.; Zhang, M. Org. Lett. 2022, 24, 608.
doi: 10.1021/acs.orglett.1c04048 pmid: 34094424 |
|
[5] |
(a) Bohm, H.-J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Muller, K.; Obst-Sander, U.; Stahl, M. ChemBioChem 2004, 5, 637.
doi: 10.1002/cbic.200301023 pmid: 25727703 |
(b) Kirk, K. L. J. Fluorine Chem. 2006, 127, 1013.
doi: 10.1016/j.jfluchem.2006.06.007 pmid: 25727703 |
|
(c) Swallow, S. Prog. Med. Chem. 2015, 54, 65.
doi: 10.1016/bs.pmch.2014.11.001 pmid: 25727703 |
|
[6] |
(a) Yu, J.; Zhou, Y.; Chen, D.-F.; Gong, L.-Z. Pure Appl. Chem. 2014, 86, 1217.
doi: 10.1515/pac-2013-1208 |
(b) Suliman, R. S.; Alghamdi, S. S.; Ali, R.; Rahman, I.; Alqahtani, T.; Frah, I. K.; Aljatli, D. A.; Huwaizi, S.; Algheribe, S.; Alehaideb, Z.; Islam, I. Molecules 2022, 27, 2409.
doi: 10.3390/molecules27082409 |
|
(c) Sasidharan, N.; Kumar, A. S.; Hng, H. H. ChemistrySelect 2018, 3, 12544.
doi: 10.1002/slct.201803239 |
|
[7] |
Chen, X.; Xiao, F.; He, W.-M. Org. Chem. Front. 2021, 8, 5206.
doi: 10.1039/D1QO00375E |
[8] |
(a) Egami, H.; Sodeoka, M. Angew. Chem., Int. Ed. 2014, 53, 8294.
doi: 10.1002/anie.201309260 |
(b) Merino, E.; Nevado, C. Chem. Soc. Rev. 2014, 43, 6598.
doi: 10.1039/C4CS00025K |
|
[9] |
Koike, T. Asian J. Org. Chem. 2020, 9, 529.
doi: 10.1002/ajoc.202000058 |
[10] |
(a) Chen, D.; Yang, W.; Yao, Y.; Yang, X.; Deng, Y.; Yang, D. Chin. J. Org. Chem. 2018, 38, 2571. (in Chinese)
doi: 10.6023/cjoc201803045 |
( 陈董涵, 杨文, 姚永祺, 杨新, 邓颖颖, 杨定乔, 有机化学, 2018, 38, 2571.)
doi: 10.6023/cjoc201803045 |
|
(b) Qiu, Y.; Wei, F.; Ye, L.; Zhao, M. Chin. J. Org. Chem. 2021, 41, 1821. (in Chinese)
|
|
( 邱云亮, 魏凤姣, 叶鎏, 赵旻玥, 有机化学, 2021, 41, 1821.)
doi: 10.6023/cjoc202009036 |
|
[11] |
Xiao, H.; Shen, H.; Zhu, L.; Li, C. J. Am. Chem. Soc. 2019, 141, 11440.
doi: 10.1021/jacs.9b06141 |
[12] |
(a) Guo, W.; Tao, K.; Tan, W.; Zhao, M.; Zheng, L.; Fan, X. Org. Chem. Front. 2019, 6, 2048.
doi: 10.1039/C8QO01353E |
(b) Zheng, L.; Cai, L.; Tao, K.; Xie, Z.; Lai, Y.-L.; Guo, X. Asian J. Org. Chem. 2021, 10, 711.
doi: 10.1002/ajoc.202100009 |
|
(c) Zheng, L.; Tao, K.; Guo, W. Adv. Synth. Catal. 2021, 363, 62.
doi: 10.1002/adsc.202001079 |
|
[13] |
Yasu, Y.; Koike, T.; Akita, M. Org. Lett. 2013, 15, 2136.
doi: 10.1021/ol4006272 |
[14] |
Noto, N.; Koike, T.; Akita, M. Chem. Sci. 2017, 8, 6375.
doi: 10.1039/C7SC01703K |
[15] |
Xiong, Y.; Ma, X.; Zhang, G. Org. Lett. 2019, 21, 1699.
doi: 10.1021/acs.orglett.9b00252 pmid: 30802073 |
[16] |
Ge, H.; Wu, B.; Liu, Y.; Wang, H.; Shen, Q. ACS Catal. 2020, 10, 12414.
doi: 10.1021/acscatal.0c03776 |
[17] |
Zhang, L.; Zhang, G.; Wang, P.; Li, Y.; Lei, A. Org. Lett. 2018, 20, 7396.
doi: 10.1021/acs.orglett.8b03081 |
[18] |
Huang, Y.; Hong, H.; Zou, Z.; Liao, C.; Lu, J.; Qin, Y.; Li, Y.; Chen, L. Org. Biomol. Chem. 2019, 17, 5014.
doi: 10.1039/C9OB00717B |
[19] |
Wang, F.; Qi, X.; Liang, Z.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2014, 53, 1881.
doi: 10.1002/anie.201309991 |
[20] |
Yang, M.; Wang, W.; Liu, Y.; Feng, L.; Ju, X. Chin. J. Chem. 2014, 32, 833.
doi: 10.1002/cjoc.201400167 |
[21] |
Xiong, Y.; Sun, Y.; Zhang, G. Org. Lett. 2018, 20, 6250.
doi: 10.1021/acs.orglett.8b02735 pmid: 30246540 |
[22] |
Wu, L.; Zhang, Z.; Wu, D.; Wang, F.; Chen, P.; Lin, Z.; Liu, G. Angew. Chem., Int. Ed. 2021, 60, 6997.
doi: 10.1002/anie.202015083 |
[23] |
Karimov, R. R.; Sharma, A.; Hartwig, J. F. ACS Cent. Sci. 2016, 2, 715.
doi: 10.1021/acscentsci.6b00214 |
[24] |
Zhu, C.-L.; Wang, C.; Qin, Q.-X.; Yruegas, S.; Martin, C. D.; Xu, H. ACS Catal. 2018, 86, 5032.
|
[25] |
Xiong, H.; Ramkumar, N.; Chiou, M.-F.; Jian, W.; Li, Y.; Su, J.-H.; Zhang, X.; Bao, H. Nat. Commun. 2019, 10, 122.
doi: 10.1038/s41467-018-07985-2 |
[26] |
Ge, L.; Zhou, H.; Chiou, M.-F.; Jiang, H.; Jian, W.; Ye, C.; Li, X.; Zhu, X.; Xiong, H.; Li, Y.; Song, L.; Zhang, X.; Bao, H. Nat. Catal. 2021, 4, 28.
doi: 10.1038/s41929-020-00551-4 |
[27] |
Liu, W.; Pu, M.; He, J.; Zhang, T.; Dong, S.; Liu, X.; Wu, Y.-D.; Feng, X. J. Am. Chem. Soc. 2021, 143, 11856.
doi: 10.1021/jacs.1c05881 |
[28] |
Zhang, Y.; Han, X.; Zhao, J.; Qian, Z.; Li, T.; Tang, Y.; Zhang, H.-Y. Adv. Synth. Catal. 2018, 360, 2659.
doi: 10.1002/adsc.201800488 |
[29] |
Huang, H.-G.; Li, W.; Zhong, D.; Wang, H.-C.; Zhao, J.; Liu, W.-B. Chem. Sci. 2021, 12, 3210.
doi: 10.1039/D0SC06473D |
[30] |
Carboni, A.; Dagousset, G.; Magnier, E.; Masson, G. Org. Lett. 2014, 16, 1240.
doi: 10.1021/ol500374e pmid: 24520865 |
[31] |
Dagousset, G.; Carboni, A.; Magnier, E.; Masson, G. Org. Lett. 2014, 16, 4340.
doi: 10.1021/ol5021477 |
[32] |
Geng, X.; Lin, F.; Wang, X.; Jiao, N. Org. Lett. 2017, 19, 4738.
doi: 10.1021/acs.orglett.7b02056 |
[33] |
Liu, H.; Guo, Q.; Chen, C.; Wang, M.; Xu, Z. Org. Chem. Front. 2018, 5, 1522.
doi: 10.1039/C8QO00120K |
[34] |
Zhang, M.; Lin, J.-H.; Xiao, J.-C. Org. Lett. 2021, 23, 6079.
doi: 10.1021/acs.orglett.1c02146 |
[35] |
Yu, X.-L.; Chen, J.-R.; Chen, D.-Z.; Xiao, W.-J. Chem. Commun. 2016, 52, 8275.
doi: 10.1039/C6CC03335K |
[36] |
Wang, P.; Zhu, S.; Lu, D.; Gong, Y. Org. Lett. 2020, 22, 1924.
doi: 10.1021/acs.orglett.0c00287 |
[37] |
Egami, H.; Kawamura, S.; Miyazaki, A.; Sodeoka, M. Angew. Chem., Int. Ed. 2013, 52, 7841.
doi: 10.1002/anie.201303350 |
[38] |
Lin, J.-S.; Xiong, Y.-P.; Ma, C.-L.; Zhao, L.-J.; Tan, B.; Liu, X.-Y. Chem.-Eur. J. 2014, 20, 1332.
doi: 10.1002/chem.201303387 |
[39] |
Lin, J.-S.; Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-Y. J. Am. Chem. Soc. 2016, 138, 9357.
doi: 10.1021/jacs.6b04077 |
[40] |
Lin, J.-S.; Wang, F.-L.; Dong, X.-Y.; He, W.-W.; Yuan, Y.; Chen, S.; Liu, X.-Y. Nat. Commun. 2017, 8, 14841.
doi: 10.1038/ncomms14841 |
[41] |
Zhang, H.-Y.; Huo, W.; Ge, C.; Zhao, J.; Zhang, Y. Synlett 2017, 28, 962.
doi: 10.1055/s-0036-1588400 |
[42] |
Chang, B.; Su, Y.; Huang, D.; Wang, K.-H.; Zhang, W.; Shi, Y.; Zhang, X.; Hu, Y. J. Org. Chem. 2018, 83, 4365.
doi: 10.1021/acs.joc.8b00009 |
[43] |
Mou, X.-Q.; Rong, F.-M.; Zhang, H.; Chen, G.; He, G. Org. Lett. 2019, 21, 4657.
doi: 10.1021/acs.orglett.9b01552 |
[44] |
Kim, E.; Choi, S.; Kim, H.; Cho, E. J. Chem.-Eur. J. 2013, 19, 6209.
doi: 10.1002/chem.201300564 |
[45] |
Wei, Q.; Chen, J.-R.; Hu, X.-Q.; Yang, X.-C.; Lu, B.; Xiao, W.-J. Org. Lett. 2015, 17, 4464.
doi: 10.1021/acs.orglett.5b02118 |
[46] |
Noto, N.; Miyazawa, K.; Koike, T.; Akita, M. Org. Lett. 2015, 17, 3710.
doi: 10.1021/acs.orglett.5b01694 |
[47] |
Jarrige, L.; Carboni, A.; Dagousset, G.; Levitre, G.; Magnier, E.; Masson, G. Org. Lett. 2016, 18, 2906.
doi: 10.1021/acs.orglett.6b01257 pmid: 27276522 |
[48] |
Claraz, A.; Djian, A.; Masson, G. Org. Chem. Front. 2021, 8, 288.
doi: 10.1039/D0QO01307B |
[49] |
Claraz, A.; Courant, T.; Masson, G. Org. Lett. 2020, 22, 1580.
doi: 10.1021/acs.orglett.0c00176 |
[50] |
Zheng, Y.-N.; Zheng, H.; Li, T.; Wei, W.-T. ChemSusChem 2021, 14, 5340.
doi: 10.1002/cssc.202102243 |
[51] |
Proctor, P. S. J.; Colgan, A. C.; Phipps, R. J. Nat. Chem. 2020, 12, 990.
doi: 10.1038/s41557-020-00561-6 pmid: 33077927 |
[1] | 李思达, 崔鑫, 舒兴中, 吴立朋. 钛催化的烯烃制备1,1-二硼化合物[J]. 有机化学, 2024, 44(2): 631-637. |
[2] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[3] | 文思, 丁宇浩, 田青于, 葛进, 程国林. 铑(III)催化苯甲亚胺酸乙酯和CF3-亚胺氧锍叶立德C—H 活化/环化反应合成CF3-1H-苯并[de][1,8]萘吡啶[J]. 有机化学, 2024, 44(1): 291-300. |
[4] | 朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17. |
[5] | 金玉坤, 任保轶, 梁福顺. 可见光介导的三氟甲基的选择性C-F键断裂及其在偕二氟类化合物合成中的应用[J]. 有机化学, 2024, 44(1): 85-110. |
[6] | 张建涛, 张聪, 莫诺琳, 罗佳婷, 陈莲芬, 刘卫兵. 氯仿参与的烯烃自由基加成反应的研究进展[J]. 有机化学, 2023, 43(9): 3098-3106. |
[7] | 岁丹丹, 岑南楠, 龚若蕖, 陈阳, 陈文博. 无支持电解质条件下连续流电化学合成三氟甲基化氧化吲哚[J]. 有机化学, 2023, 43(9): 3239-3245. |
[8] | 樊思捷, 董武恒, 梁彩云, 王贵超, 袁瑶, 尹作栋, 张兆国. 可见光诱导的自由基环化反应构建4-芳基-1,2-二氢萘类化合物[J]. 有机化学, 2023, 43(9): 3277-3286. |
[9] | 马虎, 黄丹凤, 王克虎, 唐朵朵, 冯杨, 任园园, 王君娇, 胡雨来. 3-(三氟甲基)吡唑类化合物的合成[J]. 有机化学, 2023, 43(9): 3257-3267. |
[10] | 徐伟, 翟宏斌, 程斌, 汪太民. 可见光诱导的钯催化Heck反应[J]. 有机化学, 2023, 43(9): 3035-3054. |
[11] | 赵瑜, 张凯, 白育斌, 张琰图, 史时辉. 无金属条件下可见光催化与溴盐协同促进烯烃的氢硅化反应研究[J]. 有机化学, 2023, 43(8): 2837-2847. |
[12] | 归春明, 周潼瑶, 王海峰, 严琼姣, 汪伟, 黄锦, 陈芬儿. 可见光氧化还原催化炔基化反应的研究进展[J]. 有机化学, 2023, 43(8): 2647-2663. |
[13] | 冯莹珂, 王贺, 崔梦行, 孙然, 王欣, 陈阳, 李蕾. 可见光诱导的新型官能化芳基异腈化合物的二氟烷基化环化反应[J]. 有机化学, 2023, 43(8): 2913-2925. |
[14] | 杨晓娜, 郭宏宇, 周荣. 可见光促进有机硅化合物参与的化学转化[J]. 有机化学, 2023, 43(8): 2720-2742. |
[15] | 普佳霞, 贾小英, 韩丽荣, 李清寒. 可见光诱导C—N键断裂构建C—C键的研究进展[J]. 有机化学, 2023, 43(8): 2591-2613. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||