有机化学 ›› 2021, Vol. 41 ›› Issue (2): 642-660.DOI: 10.6023/cjoc202005055 上一篇 下一篇
所属专题: 有机光催化虚拟合辑
综述与进展
收稿日期:
2020-05-21
修回日期:
2020-05-25
发布日期:
2020-09-09
通讯作者:
程冬萍, 许孝良
作者简介:
基金资助:
He Zhaoa, Dongping Chengb,*(), Xiaoliang Xua,*()
Received:
2020-05-21
Revised:
2020-05-25
Published:
2020-09-09
Contact:
Dongping Cheng, Xiaoliang Xu
Supported by:
文章分享
可见光催化具有成本低及环境友好等特点, 符合绿色化学的要求, 近年来在有机合成领域引起了广泛关注. 其中α-氨基烷基自由基因其具有活性高和易获得等优点, 在可见光催化中占据着重要的位置. 主要综述了该活性自由基在可见光催化中的发展和应用, 并对其未来研究进行了展望.
赵赫, 程冬萍, 许孝良. α-氨基烷基自由基在可见光催化中的应用[J]. 有机化学, 2021, 41(2): 642-660.
He Zhao, Dongping Cheng, Xiaoliang Xu. Application of α-Aminoalkyl Radical in Visible Light Catalysis[J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 642-660.
[1] |
Schmittel M.; Burghart A. Angew. Chem., Int. Ed. Engl. 1997, 36, 2550.
doi: 10.1002/(ISSN)1521-3773 |
[2] |
Houmam.A. Chem. Rev. 2008, 108, 2180.
doi: 10.1021/cr068070x |
[3] |
Ruiz Espelt, L.; McPherson, I.S.; Wiensch, E.M.; Yoon, T.P. J. Am. Chem. Soc. 2015, 137, 2452.
doi: 10.1021/ja512746q |
[4] |
Dai X.; Cheng D.; Guan B.; Mao W.; Xu X.; Li X. J. Org. Chem. 2014, 79, 7212.
doi: 10.1021/jo501097b |
[5] |
Shi L.; Xia W.J. Chem. Soc. Rev. 2012, 41, 7687.
doi: 10.1039/c2cs35203f |
[6] |
Xuan J.; Xiao W.J. Angew. Chem., Int. Ed. 2012, 51, 6828.
doi: 10.1002/anie.201200223 |
[7] |
McNally A.; Prier C.K.; MacMillan D. W. C.Science 2011, 334, 1114.
doi: 10.1126/science.1213920 |
[8] |
Miyake Y.; Nakajima K.; Nishibayashi Y. J. Am. Chem. Soc. 2012, 134, 3338.
doi: 10.1021/ja211770y |
[9] |
Chen J.R.; Hu X.Q.; Lu L.Q.; Xiao W.J. Acc. Chem. Res. 2016, 49, 1911.
doi: 10.1021/acs.accounts.6b00254 |
[10] |
Yoon U.C.; Mariano P.S. Acc. Chem. Res. 1992, 25, 233.
doi: 10.1021/ar00017a005 |
[11] |
Cho D.W.; Yoon U.C.; Mariano P.S. Acc. Chem. Res. 2011, 44, 204.
doi: 10.1021/ar100125j |
[12] |
Nakajima K.; Nojima S.; Nishibayashi Y. Acc. Chem. Res. 2016, 49, 1946.
doi: 10.1021/acs.accounts.6b00251 |
[13] |
McNally A.; Prier C.K.; MacMillan D. W. C.Science 2011, 334, 1114.
doi: 10.1126/science.1213920 |
[14] |
Singh A.; Arora A.; Weaver J.D. Org. Lett. 2013, 15, 5390.
doi: 10.1021/ol402751j |
[15] |
Dong J.; Xia Q.; Lv X.; Yan C.; Song H.; Liu Y.; Wang Q. Org. Lett. 2018, 20, 5661.
doi: 10.1021/acs.orglett.8b02389 |
[16] |
Zuo Z.; MacMillan D. W. C.J. Am. Chem. Soc. 2014, 136, 5257.
doi: 10.1021/ja501621q |
[17] |
Zuo Z.; Ahneman D.T.; Chu L.; Terrett J.A.; Doyle A.G.; Mac- Millan, D. W. C.Science 2014, 345, 437.
|
[18] |
Zuo Z.; Cong H.; Li W.; Choi J.; Fu G.C.; MacMillan D. W. C.J. Am. Chem. Soc. 2016, 138, 1832.
doi: 10.1021/jacs.5b13211 |
[19] |
Tellis J.C.; Primer D.N.; Molander G.A. Science 2014, 345, 433.
|
[20] |
El Khatib, M.; Serafim, R. A. M.; Molander, G.A. Angew. Chem., Int. Ed. 2016, 55, 254.
doi: 10.1002/anie.201506147 |
[21] |
Shaw.M.H.; Shurtleff, V. W.; Terrett, J. A.; MacMillan, D. W. C.Science 2016, 352, 1304.
doi: 10.1126/science.aaf6635 |
[22] |
Remeu C.; Kelly C.B.; Patel N.R.; Molander G.A. ACS Catal. 2017, 7, 6065.
doi: 10.1021/acscatal.7b01973 |
[23] |
Fan, L-L.; Jia, J.; Hou, H.; Lefebvre, Q.; Rueping, M.Chem.-Eur. J. 2016, 22, 16437.
doi: 10.1002/chem.201604452 |
[24] |
Cheng W.M.; Sang R.; Fu Y. ACS Catal. 2017, 7, 907.
doi: 10.1021/acscatal.6b03215 |
[25] |
Ren L.; Cong H. Org. Lett. 2018, 20, 3225.
doi: 10.1021/acs.orglett.8b01077 |
[26] |
Douglas J.J.; Cole K.P.; Stephenson C. R. J.J. Org. Chem. 2014, 79, 11631.
doi: 10.1021/jo502288q |
[27] |
Pratt C.J.; Aycock R.A.; King M.D.; Jui N.T. Synlett 2020, 31, 51.
doi: 10.1055/s-0039-1690197 |
[28] |
Zhou W.; Cao G.M.; Shen G.; Zhu X.; Gui Y.; Ye J.; Sun L.; Liao L.J.; Yu D.G. Angew. Chem., Int. Ed. 2017, 56, 15683.
doi: 10.1002/anie.201704513 |
[29] |
Le C.; Liang Y.F.; MacMillan D.W. C. Nature 2017, 547, 79.
|
[30] |
Li J.; Kong M.; Qiao B.; Lee R.; Zhao X.; Jiang Z. Nat. Commun. 2018, 9, 2445.
doi: 10.1038/s41467-018-04885-3 |
[31] |
Zeng G.; Li Y.; Qiao B.; Zhao X.; Jiang Z. Chem. Commun. 2019, 55, 11362.
doi: 10.1039/C9CC05304B |
[32] |
Liu Y.; Liu X.; Li J.; Zhao X.; Qiao B. Jiang Z. Chem. Sci. 2018, 9, 8094.
doi: 10.1039/C8SC02948B |
[33] |
Noble A.; MacMillan D. W. C.J. Am. Chem. Soc. 2014, 136, 11602.
doi: 10.1021/ja506094d |
[34] |
Noble A.; McCarver S.J.; MacMillan D. W. C.J. Am. Chem. Soc. 2015, 137, 624.
doi: 10.1021/ja511913h |
[35] |
Xuan J.; Zeng T.-T.; Feng Z.J.; Deng Q.H.; Chen J.R.; Lu L.Q.; Xiao W.J.; Alper H. Angew. Chem., Int. Ed. 2015, 54, 1625.
doi: 10.1002/anie.201409999 |
[36] |
Xie J.; Shi S.; Zhang T.; Mehrkens N.; Rudolph M.; Hashmi A. S. K.Angew. Chem., Int. Ed. 2015, 54, 6046.
doi: 10.1002/anie.201412399 |
[37] |
Kohls P.; Jadhav D.; Pandey G.; Reiser O. Org. Lett. 2012, 14, 672.
doi: 10.1021/ol202857t |
[38] |
Espelt L.R.; Wiensch E.M.; Yoon T.P. J. Org. Chem. 2013, 78, 4107.
doi: 10.1021/jo400428m |
[39] |
Miyake Y.; Ashida Y.; Nakajima K.; Nishibayashi Y. Chem. Commun. 2012, 48, 6966.
doi: 10.1039/c2cc32745g |
[40] |
Nakajima K.; Kitagawa M.; Ashida Y.; Miyake Y.; Nishibayashi Y. Chem. Commun. 2014, 50, 8900.
doi: 10.1039/C4CC03000A |
[41] |
Miyazawa K.; Koike T.; Akita M. Adv. Synth. Catal. 2014, 356, 2749.
doi: 10.1002/adsc.201400556 |
[42] |
Murphy J.J.; Bastida D.; Paria S.; Fagnoni M.; Melchiorre P. Nature 2016, 532, 218.
doi: 10.1038/nature17438 pmid: 27075098 |
[43] |
Lin S.X.; Sun G.J.; Kang Q. Chem. Commun. 2017, 53, 7665.
doi: 10.1039/C7CC03650G |
[44] |
Cai Y.F.; Yu R.T.; Fan, L-L.; Hou, H.; Lefebvre, Q.; Rueping, M.ACS Catal. 2018, 8, 9471.
doi: 10.1021/acscatal.8b02937 |
[45] |
Xi Z.W.; Yang L.; Wang D.Y.; Pu C.D.; Shen Y.M.; Wu C.D.; Peng X.G. J. Org. Chem. 2018, 83, 11886.
doi: 10.1021/acs.joc.8b01651 |
[46] |
Ruiz Espelt, L.; McPherson, I.S.; Wiensch, E.M.; Yoon, T.P. J. Am. Chem. Soc. 2015, 137, 2452.
doi: 10.1021/ja512746q |
[47] |
McCarver S.J.; Qiao J.X.; Carpenter J.; Borzilleri R.M.; Poss M.A.; Eastgate M.D.; MacMillan D. W. C.Angew. Chem., Int. Ed. 2017, 56, 728.
doi: 10.1002/anie.v56.3 |
[48] |
Ju X.; Li D.; Li W.; Yu W. Adv. Synth.Catal. 2012, 354, 3561.
|
[49] |
Guo J.T.; Yang D.C.; Guan Z.; He Y.H. J. Org. Chem. 2017, 82, 1888.
doi: 10.1021/acs.joc.6b03034 |
[50] |
Hsu C.W.; Sundén H. Org. Lett. 2018, 20, 2051.
doi: 10.1021/acs.orglett.8b00597 |
[51] |
Aycock R, A.; Pratt, C, J.; Jui, N, T.ACS Catal. 2018, 9115.
|
[52] |
Miyake Y.; Nakajima K.; Nishibayashi Y. J. Am. Chem. Soc. 2012, 134, 3338.
doi: 10.1021/ja211770y |
[53] |
Mizoguchi H.; Oikawa H.; Oguri H. Nat. Chem. 2014, 6, 57.
doi: 10.1038/nchem.1798 pmid: 24345948 |
[54] |
Zhu S.; Das A.; Bui L.; Zhou H.; Curran D.P.; Rueping M. J. Am. Chem. Soc. 2013, 135, 1823.
doi: 10.1021/ja309580a |
[55] |
Dai X.; Cheng D.; Guan B.; Mao W.; Xu X.; Li X. J. Org. Chem. 2014, 79, 7212.
doi: 10.1021/jo501097b |
[56] |
Dai X.; Mao R.; Guan B.; Xu X.; Li X. RSC Adv. 2015, 5, 55290.
doi: 10.1039/C5RA10491B |
[57] |
Hepburn H.B.; Melchiorre P. Chem. Commun. 2016, 52, 3520.
doi: 10.1039/C5CC10401G |
[58] |
Yin Y.; Dai Y.; Jia H.; Li J.; Bu L.; Qiao B.; Zhao X.; Jiang Z. J. Am. Chem. Soc. 2018, 140, 6083.
doi: 10.1021/jacs.8b01575 |
[59] |
Chu L.; Ohta C.; Zuo Z.; MacMillan D. W. C.J. Am. Chem. Soc. 2014, 136, 10886.
doi: 10.1021/ja505964r |
[60] |
Miyazawa K.; Koike T.; Akita M. Adv. Synth. Catal. 2014, 356, 2749.
doi: 10.1002/adsc.201400556 |
[61] |
McManus J.B.; Onuska N.P.; Nicewicz D.A. J. Am. Chem. Soc. 2018, 140, 9056.
doi: 10.1021/jacs.8b04890 |
[62] |
Grübel M.; Jandl C.; Bach T. Synlett 2019, 30, 1825.
doi: 10.1055/s-0039-1690006 |
[63] |
Ashley M.A.; Yamauchi C.; Chu J.C.; Otsuka S.; Yorimitsu H.; Rovis T. Angew. Chem., Int. Ed. 2019, 58, 4002.
doi: 10.1002/anie.v58.12 |
[64] |
Flodén N.J.; Trowbridge A.; Willcox D.; Walton S.M.; Kim Y.; Gaunt M.J. J. Am. Chem. Soc. 2019, 141, 8426.
doi: 10.1021/jacs.9b03372 |
[65] |
Miyake Y.; Nakajima K.; Nishibayashi Y. Chem.-Eur. J. 2012, 18, 16473.
doi: 10.1002/chem.201203066 |
[66] |
Zhou H.; Lu P.; Gu X.; Li P. Org. Lett. 2013, 15, 5646.
doi: 10.1021/ol402573j |
[67] |
Itoh K.; Kato R.; Kinugawa D.; Kamiya H.; Kudo R.; Hasegawa M.; Fujii H.; Suga H. Org. Biomol. Chem. 2015, 13, 8919.
doi: 10.1039/C5OB01277E |
[68] |
Uraguchi D.; Kinoshita N.; Kizu T.; Ooi T. J. Am. Chem. Soc. 2015, 137, 13768.
doi: 10.1021/jacs.5b09329 |
[69] |
Fava E.; Millet A.; Nakajima M.; Loescher S.; Rueping M. Angew. Chem., Int. Ed. 2016, 55, 6776.
doi: 10.1002/anie.201511235 |
[70] |
Han B.; Li Y.; Yu Y.; Gong L. Nat. Commun. 2019, 10, 3804.
doi: 10.1038/s41467-019-11688-7 |
[71] |
Proctor R. S. J.; Davis H.J.; Phipps R.J. Science 2018, 360, 419.
doi: 10.1126/science.aar6376 |
[72] |
Liu X.; Liu Y.; Chai G.; Qiao B.; Zhao X.; Jiang Z. Org. Lett. 2018, 20, 6298.
doi: 10.1021/acs.orglett.8b02791 |
[73] |
Ji J.; Zhu Z.; Xiao L.; Zhu X.; Le Z. Org. Chem. Front. 2019, 6, 3693.
doi: 10.1039/C9QO00935C |
[74] |
Zhang P.; Xiao T.; Xiong S.; Dong X.; Zhou L. Org. Lett. 2014, 16, 3264.
doi: 10.1021/ol501276j |
[75] |
Miyake Y.; Ashida Y.; Nakajima K.; Nishibayashi Y. Chem.-Eur. J. 2014, 20, 6120.
doi: 10.1002/chem.201304731 |
[76] |
Nakajima K.; Ashida Y.; Nojima S.; Nishibayashi Y. Chem. Lett. 2015, 44, 545.
doi: 10.1246/cl.150019 |
[77] |
Constantin T.; Zanini M.; Regni A.; Sheikh N.S.; Julia F.; Leonori D. Science 2020, 367, 1021.
doi: 10.1126/science.aba2419 |
[78] |
Zhou X.S.; Yan D.M.; Chen J.R. Chem 2020, 6, 823.
doi: 10.1016/j.chempr.2020.03.007 |
[79] |
Li J.; Gu Z.; Zhao X.; Qiao B.; Jiang Z. Chem. Commun. 2019, 55, 12916.
doi: 10.1039/C9CC07380A |
[1] | 李路瑶, 贺忠文, 张振国, 贾振华, 罗德平. 三芳基碳正离子在有机合成中的应用[J]. 有机化学, 2024, 44(2): 421-437. |
[2] | 黄净, 杨毅华, 张占辉, 刘守信. 酰胺键的绿色高效构建方法与技术进展[J]. 有机化学, 2024, 44(2): 409-420. |
[3] | 朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17. |
[4] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[5] | 赵茜帆, 陈永正, 张世明. 碳基非金属催化剂在有机合成领域的应用及机理研究[J]. 有机化学, 2024, 44(1): 137-147. |
[6] | 岁丹丹, 岑南楠, 龚若蕖, 陈阳, 陈文博. 无支持电解质条件下连续流电化学合成三氟甲基化氧化吲哚[J]. 有机化学, 2023, 43(9): 3239-3245. |
[7] | 蒋宜欣, 唐伯孝, 毛海波, 陈雪霞, 俞洋杰, 全翠英, 徐昭阳, 石金慧, 刘益林. 水-聚乙二醇(PEG-200)中烯烃与碘代芳烃绿色可循环无负载偶联反应的研究[J]. 有机化学, 2023, 43(9): 3210-3215. |
[8] | 周然, 袁春梅, 张桃, 毛飘, 刘燚, 孟开妮, 幸惠, 薛伟. 含喹唑啉酮的查尔酮衍生物的设计、合成及生物活性研究[J]. 有机化学, 2023, 43(9): 3196-3209. |
[9] | 杨晓娜, 郭宏宇, 周荣. 可见光促进有机硅化合物参与的化学转化[J]. 有机化学, 2023, 43(8): 2720-2742. |
[10] | 高艳华, 张银潘, 张妍, 宋涛, 杨勇. 可见光驱动表面富含氧空位Nb2O5催化醇氧化反应[J]. 有机化学, 2023, 43(7): 2572-2579. |
[11] | 徐光利, 许静, 徐海东, 崔香, 舒兴中. 过渡金属催化烯烃和炔烃合成1,3-共轭二烯化合物研究进展[J]. 有机化学, 2023, 43(6): 1899-1933. |
[12] | 卢凯, 屈浩琦, 陈樨, 秋慧, 郑晶, 马猛涛. 无催化剂、无溶剂条件下炔烃和烯烃与儿茶酚硼烷的硼氢化反应[J]. 有机化学, 2023, 43(6): 2197-2205. |
[13] | 窦谦, 汪太民, 房丽晶, 翟宏斌, 程斌. 光诱导铁催化在有机合成中的应用研究进展[J]. 有机化学, 2023, 43(4): 1386-1415. |
[14] | 白林盛, 洪鹏, 应安国. 功能化聚丙烯腈纤维促进有机反应的研究进展[J]. 有机化学, 2023, 43(4): 1241-1270. |
[15] | 莫百川, 陈春霞, 彭进松. 木质素及其衍生物负载金属催化剂在有机合成中的应用研究进展[J]. 有机化学, 2023, 43(4): 1215-1240. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||