有机化学 ›› 2021, Vol. 41 ›› Issue (3): 1081-1097.DOI: 10.6023/cjoc202008024 上一篇 下一篇
所属专题: 热点论文虚拟合集
综述与进展
收稿日期:
2020-08-13
修回日期:
2020-09-03
发布日期:
2020-09-22
通讯作者:
吴磊
基金资助:
Jie Zhua, Wenchao Yangb, Chengyun Zhanga, Lei Wua,*()
Received:
2020-08-13
Revised:
2020-09-03
Published:
2020-09-22
Contact:
Lei Wu
About author:
Supported by:
文章分享
Dendralenes作为一种含有支链骨架的交叉共轭聚烯烃, 是多种天然产物和光电材料的基本骨架, 也是快速构建手性多环结构的重要中间体, 在功能材料、天然产物化学、聚合物化学和合成化学等诸多领域占据重要地位. Dendralenes的合成与衍生化应用是一个曾经被忽视但正在兴起的领域. 近年来, dendralenes的合成得到了较快发展, 按dendralenes共轭单元数的不同概述了其合成领域的最新成果, 重点介绍反应设计与机理, 并展望了dendralenes的后续合成与应用研究发展.
祝洁, 杨文超, 张乘运, 吴磊. 近十年Dendralenes催化合成研究进展[J]. 有机化学, 2021, 41(3): 1081-1097.
Jie Zhu, Wenchao Yang, Chengyun Zhang, Lei Wu. Recent Progress in the Synthesis of Dendralenes: A Decade Update[J]. Chinese Journal of Organic Chemistry, 2021, 41(3): 1081-1097.
[1] |
(a) Hopf, H. Angew. Chem.. Int. Ed. 1984, 23, 948.
pmid: 26151489 |
(b) Hopf, H. Nature 2009, 460, 183.
doi: 10.1038/460183a pmid: 26151489 |
|
(c) Hopf, H. Angew. Chem., Int. Ed. 2001, 40, 705.
doi: 10.1002/1521-3773(20010216)40:4【-逻*辑*与-】amp;lt;【-逻*辑*与-】amp;gt;1.0.CO;2-X pmid: 26151489 |
|
(d) Sherburn, M. S. Acc. Chem. Res. 2015, 48, 1961.
doi: 10.1021/acs.accounts.5b00242 pmid: 26151489 |
|
(e) Hopf, H.; Sherburn, M. S. Cross Conjugation-Modern Dendralene, Radialene and Fulvene Chemistry, Wiley-VCH, Verlag GmbH & Co. KGaA, 2016.
pmid: 26151489 |
|
[2] |
Hopf, H. Classics in Hydrocarbon Chemistry: Syntheses, Concepts, Perspectives, Wiley-VCH, Weinheim, 2000, p. 103.
|
[3] |
Paul, R.; Tchelitcheff, S. C. R. Hebd. Seances Acad. Sci. 1951, 232, 1939.
|
[4] |
(a) Bolmquist, A. T.; Verdol, J. A. J. Am. Chem. Soc. 1955, 77, 81;.
doi: 10.1021/ja01606a025 |
(b) Bailey, W. J.; Ecomomy, J. J. Am. Chem. Soc. 1955, 77, 1133;.
doi: 10.1021/ja01610a014 |
|
(c) Bailey, W. J.; Nielsen, N. A. J. Org. Chem. 1962, 27, 3088.
doi: 10.1021/jo01056a025 |
|
[5] |
(a) Bradford, T. A.; Payne, A. D.; Willis, A. C.; Paddon-Row, M. N.; Sherburn, M. S. J. Org. Chem. 2010, 75, 491.
doi: 10.1021/jo9024557 pmid: 20000615 |
(b) Hopf, H.; Sherburn, M. S. Angew. Chem.. Int. Ed. 2012, 51, 2298.
doi: 10.1002/anie.v51.10 pmid: 20000615 |
|
(c) Naidua, G. S.; Singh, R. Ghosh, S. K. Synlett 2018, 29, 282.
doi: 10.1055/s-0036-1590960 pmid: 20000615 |
|
[6] |
Fielder, S.; Rowan, D. D.; Sherburn, M. S. Angew. Chem., Int. Ed. 2000, 39, 4331.
doi: 10.1002/(ISSN)1521-3773 |
[7] |
Brummond, K. M.; Chen, H.; Sill, P.; You, L. J. Am. Chem. Soc. 2002, 124, 15186.
doi: 10.1021/ja027588p pmid: 12487589 |
[8] |
Miller, N. A.; Willis, A. C.; Paddon-Row, M. N.; Sherburn, M. S. Angew. Chem., Int. Ed. 2007, 46, 937.
doi: 10.1002/(ISSN)1521-3773 |
[9] |
Payne, A. D.; Bojase, G.; Paddon-Row, M. N.; Sherburn, M. S. Angew. Chem., Int. Ed. 2009, 48, 4836.
doi: 10.1002/anie.v48:26 |
[10] |
(a) Stehling, L.; Wilke, G. Angew. Chem.. Int. Ed. 1988, 27, 571.
doi: 10.1002/(ISSN)1521-3773 pmid: 32559086 |
(b) Payne, A. D.; Willis, A. C.; Sherburn, M. S. J. Am. Chem. Soc. 2005, 127, 12188.
doi: 10.1021/ja053772+ pmid: 32559086 |
|
(c) Pellissier, H. Tetrahedron 2005, 61, 6479.
doi: 10.1016/j.tet.2005.04.014 pmid: 32559086 |
|
(d) Frontier, A. J.; Collison, C. Tetrahedron 2005, 61, 7577.
doi: 10.1016/j.tet.2005.05.019 pmid: 32559086 |
|
(e) Tius, M. A. Eur. J. Org. Chem. 2005,2193.
pmid: 32559086 |
|
(f) Pronin, S. V.; Shenvi, R. A. J. Am. Chem. Soc. 2012, 134, 19604;. 39ef1d2f-797f-4223-b3ac-b34dd9f23b4f
doi: 10.1021/0310129b pmid: 32559086 |
|
(g) Fallon, T.; Willis, A. C.; Paddon-Row, M. N.; Sherburn, M. S. J. Org. Chem. 2014, 79, 3185.
doi: 10.1021/jo500458y pmid: 32559086 |
|
(h) Desfeux, C.; Besnard, C.; Mazet, C. Org. Lett. 2020, 22, 8181.
doi: 10.1021/acs.orglett.0c01892 pmid: 32559086 |
|
[11] |
(a) Bloomquist, A. T.; Verdol, J. A. J. Am. Chem. Soc. 1955, 77, 81.
doi: 10.1021/ja01606a025 pmid: 11671638 |
(b) Bailey, W. J.; Economy, J. J. Am. Chem. Soc. 1955, 77, 1133.
doi: 10.1021/ja01610a014 pmid: 11671638 |
|
(c) Bloomquist, A. T.; Verdol, J. A. J. Am. Chem. Soc. 1955, 77, 1806.
doi: 10.1021/ja01612a026 pmid: 11671638 |
|
(d) Bailey, W. J.; Cunov, C. H.; Nicholas, L. J. Am. Chem. Soc. 1955, 77, 2787.
doi: 10.1021/ja01615a034 pmid: 11671638 |
|
(e) Martin, H. D.; Echert-Macsic, M.; Mayer, B. Angew. Chem.. Int. Ed. 1980, 19, 807.
pmid: 11671638 |
|
(f) Hopf, H. Angew. Chem.. Int. Ed. 1982, 21, 286.
pmid: 11671638 |
|
(g) Hopf, H. Angew. Chem.. Int. Ed. 1984, 96, 947.
doi: 10.1002/(ISSN)1521-3757 pmid: 11671638 |
|
(h) Brain, P. T.; Smart, B. A.; Robertson, H. E.; Davis, M. J.; H. Rankin, D. W.; Henry, W. J.; Gosney, I. J. Org. Chem. 1997, 62, 2767.
doi: 10.1021/jo962091h pmid: 11671638 |
|
(i) Woo, S.; Squires, N.; Fallis, A. G. Org. Lett. 1999, 1, 573.
doi: 10.1021/ol990695c pmid: 11671638 |
|
(j) Woo, S.; Legoupy, S.; Parra, S.; Fallis, A. G. Org. Lett. 1999, 1, 1013.
doi: 10.1021/ol990798v pmid: 11671638 |
|
(k) Le Nôtre, J.; Martinez,, A. A.; Dixneuf,, P. H.; Bruneau,, C. Tetrahedron 2003, 59, 9425.
doi: 10.1016/j.tet.2003.09.073 pmid: 11671638 |
|
(l) Park, S.; Lee, D. Synthesis 2007,2313.
pmid: 11671638 |
|
[12] |
(a) Shimizu, M.; Kurahashi, T.; Shimono, K.; Tanaka, K.; Nagao, I.; Kiyomoto, S.; Hiyama, T. Chem.-Asian J. 2007, 2, 1400.
doi: 10.1002/asia.200700120 pmid: 17828718 |
(b) Bojase, G.; Payne, A. D.; Willis, A. C.; Sherburn, M. S. Angew. Chem.. Int. Ed. 2008, 47, 910.
doi: 10.1002/(ISSN)1521-3773 pmid: 17828718 |
|
[13] |
George, J.; Ward, J. S.; Sherburn, M. S. Chem. Sci. 2019, 10, 9969.
doi: 10.1039/c9sc03976g pmid: 32055353 |
[14] |
Ghosh, S. K.; Singh, R.; Date, S. M. Chem. Commun. 2003,636.
|
[15] |
Singh, R.; Ghosh, S. K. Chem. Commun. 2011, 47, 10809.
doi: 10.1039/c1cc14211a |
[16] |
(a) Singh, R.; Naidu, G. S.; Ghosh, S. K. Proc. Natl. Acad. Sci.. India, Sect. A Phys. Sci. 2016, 86, 619.
doi: 10.1007/s40010-016-0300-2 |
(b) Naidu, G. S.; Singh, R.; Kumarb, M.; Ghosh, S. K. RSC Adv. 2016, 6, 37136.
doi: 10.1039/C6RA01729K |
|
[17] |
Rahif, M.; Roux, M.; Thibonnet, J.; Parrain, J.-L. Mol. Diversity 2013, 17, 49.
doi: 10.1007/s11030-012-9418-6 |
[18] |
(a) Ma, S. Chem. Rev. 2005, 105, 2829.
doi: 10.1021/cr020024j pmid: 24479609 |
(b) Ye, J.; Ma, S. Acc. Chem. Res. 2014, 47, 989.
doi: 10.1021/ar4002069 pmid: 24479609 |
|
(c) Jia, M.; Ma, S. Angew. Chem.. Int. Ed. 2016, 55, 9134.
doi: 10.1002/anie.v55.32 pmid: 24479609 |
|
[19] |
Wang, H.; Beiring, B.; Yu, D.-G.; Collins, K. D.; Glorius, F. Angew. Chem., Int. Ed. 2013, 52, 12430.
doi: 10.1002/anie.201306754 |
[20] |
Qiu, Y.; Posevins, D.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 2017, 56, 13112.
doi: 10.1002/anie.201706211 |
[21] |
Zhang, T.; Song, C.; Meng, Y.; Chen, P.; Xu, H.; Chang, J. J. Org. Chem. 2017, 82, 9905.
doi: 10.1021/acs.joc.7b01710 pmid: 28816455 |
[22] |
(a) Lu, X.-Y.; Zhang, C.-M.; Xu, Z.-R. Acc. Chem. Res. 2001, 34, 535.
doi: 10.1021/ar000253x pmid: 19847345 |
(b) Cowen, B. J.; Miller, C. J. Chem. Soc. Rev. 2009, 38, 3102.
doi: 10.1039/b816700c pmid: 19847345 |
|
(c) Pei, C.-K. Shi, M. Chem.-Eur. J. 2012, 18, 6712. 42d445b1-4d74-44a8-ae66-c143c537e548
doi: 10.1002/chem.201200209 pmid: 19847345 |
|
[23] |
(a) Yang, Y.; Qiu, X.; Zhao, Y.; Mu, Y.; Shi, Z. J. Am. Chem. Soc. 2016, 138, 495.
doi: 10.1021/jacs.5b11569 pmid: 26709532 |
(b) Yang, Y.; Li, R.; Zhao, Y.; Zhao, D.; Shi, Z. J. Am. Chem. Soc. 2016, 138, 8743.
pmid: 26709532 |
|
[24] |
Mao, M.; Zhang, L.; Chen, Y.-Z.; Zhu, J.; Wu, L. ACS Catal. 2017, 7, 181.
doi: 10.1021/acscatal.6b02972 |
[25] |
Xia, Y.-T.; Xie, X.-Y.; Cui, S.-H.; Ji, Y.-G.; Wu, L. Chem. Commun. 2019, 55, 11699.
doi: 10.1039/C9CC05928H |
[26] |
Xia, Y.-T.; Wu, J.-J.; Zhang, C.-Y.; Mao, M.; Ji, Y.-G.; Wu, L. Org. Lett. 2019, 21, 6383.
doi: 10.1021/acs.orglett.9b02287 pmid: 31356086 |
[27] |
Rivera-Chao, E.; Fañanás-Mastral, M. Angew. Chem., Int. Ed. 2018, 57, 9945.
doi: 10.1002/anie.v57.31 |
[28] |
Li, H.; Gontla, R.; Flegel, J.; Merten, C.; Ziegler, S.; Antonchick, A. P.; Waldmann, H. Angew. Chem., Int. Ed. 2019, 58, 307.
doi: 10.1002/anie.201811041 |
[29] |
Frank, B. B.; Kivala, M.; Blanco, B. C.; Breiten, B.; Schweizer, W. B.; Laporta, P. R.; Biaggio, I.; Jahnke, E.; Tykwinski, R. R.; Boudon, C.; Gisselbrecht, J.-P.; Diederich, F. Eur. J. Org. Chem. 2010,2487.
|
[30] |
Yamauchi, T.; Shibata, Y.; Aki, T.; Yoshimura, A.; Yao, M.; Misaki, Y. Chem. Lett. 2018, 47, 1176.
doi: 10.1246/cl.180496 |
[31] |
Januszewski, J. A.; Hampel, F.; Neiss, C.; Gçrling, A.; Tykwinski, R. R. Angew. Chem., Int. Ed. 2014, 53, 3743.
doi: 10.1002/anie.v53.14 |
[32] |
Saglam, M. F.; Fallon, T.; Paddon-Row, M. N.; Sherburn, M. S. J. Am. Chem. Soc. 2016, 138, 1022.
doi: 10.1021/jacs.5b11889 pmid: 26721640 |
[33] |
Polák, P.; Tobrman, T. Eur. J. Org. Chem. 2019,957.
|
[34] |
Lippincott, D. J.; Linstadt, R. T. H.; Maser, M. R.; Lipshutz, B. H. Angew. Chem., Int. Ed. 2017, 56, 847.
doi: 10.1002/anie.v56.3 |
[35] |
(a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
doi: 10.1021/cr00039a007 pmid: 20028025 |
(b) Kennedy, J. W. J.; Hall, D. G. J. Am. Chem. Soc. 2002, 124, 11586.
doi: 10.1021/ja027453j pmid: 20028025 |
|
(c) Ishiyama, T.; Miyaura, N. Chem. Rec. 2004, 3, 271.
doi: 10.1002/tcr.10068 pmid: 20028025 |
|
(d) Clay, J. M.; Vedejs, E. J. Am. Chem. Soc. 2005, 127, 5766.
doi: 10.1021/ja043743j pmid: 20028025 |
|
(e) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890.
doi: 10.1021/cr900206p pmid: 20028025 |
|
[36] |
Deng, Y.; Bartholomeyzik, T.; Persson, A. K. Å.; Sun, J.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 2012, 51, 2703.
doi: 10.1002/anie.201107592 |
[37] |
Deng, Y.; Bartholomeyzik, T.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 2013, 52, 6283.
doi: 10.1002/anie.201301167 |
[38] |
Bartholomeyzik, T.; Pendrill, R.; Lihammar, R.; Jiang, T.; Widmalm, G.; Bäckvall, J.-E. J. Am. Chem. Soc. 2018, 140, 298.
doi: 10.1021/jacs.7b10267 pmid: 29155573 |
[39] |
Volla, C.; M., R.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 2013, 52, 14209.
doi: 10.1002/anie.201308448 |
[40] |
Volla, C. M. R.; Mazuela, J.; Bäckvall, J.-E. Chem.-Eur. J. 2014, 20, 7608. 612af94e-9bb6-475a-b483-a43afb87ebb1
doi: 10.1002/chem.201402688 |
[41] |
Yang, B.; Qiu, Y.; Bäckvall, J.-E. Acc. Chem. Res. 2018, 51, 1520.
doi: 10.1021/acs.accounts.8b00138 pmid: 29792667 |
[42] |
Volla, C. M. R.; Bäckvall, J.-E. ACS Catal. 2016, 6, 6398.
doi: 10.1021/acscatal.6b02070 pmid: 27761298 |
[43] |
Zhu, C.; Yang, B.; Qiu, Y.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 2016, 55, 14405.
doi: 10.1002/anie.v55.46 |
[44] |
Naidu, V. R.; Posevins, D.; Volla, C. M. R.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 2017, 56, 1590.
doi: 10.1002/anie.v56.6 |
[45] |
Jonek, A.; Berger, S.; Haak, E. Chem.-Eur. J. 2012, 18, 15504. 626a977e-2498-4edb-bb1b-ae34a1d2499a
doi: 10.1002/chem.201202414 |
[46] |
Thies, N.; Haak, E. Angew. Chem., Int. Ed. 2015, 54, 4097.
doi: 10.1002/anie.201412207 |
[47] |
Sakashita, K.; Shibata, Y.; Tanaka, K. Angew. Chem., Int. Ed. 2016, 55, 6753.
doi: 10.1002/anie.201602155 |
[48] |
Li, L.; Luo, P.; Deng, Y.; Shao, Z. Angew. Chem., Int. Ed. 2019, 58, 4710.
doi: 10.1002/anie.v58.14 |
[1] | 高宝昌, 石雨, 田媛, 张治国, 张婧如, 孙宇峰, 毛国梁, 戴凌燕. 4-甲基-2-氧代-6-芳氨基-二氢-吡喃-3-腈衍生物的合成[J]. 有机化学, 2024, 44(2): 644-649. |
[2] | 陈雯雯, 张琴, 张松月, 黄芳芳, 张馨尹, 贾建峰. 无光催化剂条件下可见光诱导炔基碘和亚磺酸钠偶联反应[J]. 有机化学, 2024, 44(2): 584-592. |
[3] | 刘杰, 韩峰, 李双艳, 陈天煜, 陈建辉, 徐清. 无过渡金属参与甲基杂环化合物与醇的选择性有氧烯基化反应[J]. 有机化学, 2024, 44(2): 573-583. |
[4] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[5] | 唐菁, 罗文坤, 周俊. 氮杂螺[4.5]三烯酮衍生物的合成研究进展[J]. 有机化学, 2023, 43(9): 3006-3034. |
[6] | 陈祖佳, 宇世伟, 周永军, 李焕清, 邱琪雯, 李妙欣, 汪朝阳. BF3•OEt2作为催化剂与合成子在有机合成中的应用进展[J]. 有机化学, 2023, 43(9): 3107-3118. |
[7] | 樊思捷, 董武恒, 梁彩云, 王贵超, 袁瑶, 尹作栋, 张兆国. 可见光诱导的自由基环化反应构建4-芳基-1,2-二氢萘类化合物[J]. 有机化学, 2023, 43(9): 3277-3286. |
[8] | 贝文峰, 潘健, 冉冬梅, 刘伊琳, 杨震, 冯若昆. 基于钴催化吲哚酰胺与二炔和单炔的[4+2]环化反应合成γ-咔啉酮[J]. 有机化学, 2023, 43(9): 3226-3238. |
[9] | 蒋宜欣, 唐伯孝, 毛海波, 陈雪霞, 俞洋杰, 全翠英, 徐昭阳, 石金慧, 刘益林. 水-聚乙二醇(PEG-200)中烯烃与碘代芳烃绿色可循环无负载偶联反应的研究[J]. 有机化学, 2023, 43(9): 3210-3215. |
[10] | 归春明, 周潼瑶, 王海峰, 严琼姣, 汪伟, 黄锦, 陈芬儿. 可见光氧化还原催化炔基化反应的研究进展[J]. 有机化学, 2023, 43(8): 2647-2663. |
[11] | 冯莹珂, 王贺, 崔梦行, 孙然, 王欣, 陈阳, 李蕾. 可见光诱导的新型官能化芳基异腈化合物的二氟烷基化环化反应[J]. 有机化学, 2023, 43(8): 2913-2925. |
[12] | 张素珍, 张文文, 杨慧, 顾庆, 游书力. 铑催化2-烯基苯酚与炔烃的对映体选择性螺环化反应[J]. 有机化学, 2023, 43(8): 2926-2933. |
[13] | 陈玉琢, 孙红梅, 王亮, 胡方芝, 李帅帅. 基于α-氢迁移策略构建杂环骨架的研究进展[J]. 有机化学, 2023, 43(7): 2323-2337. |
[14] | 蔡荣斌, 李冰, 周琪, 朱隆懿, 罗军. 4,8,9,10-四官能化的2-氮杂金刚烷及其2-氮杂原金刚烷骨架异构体的合成[J]. 有机化学, 2023, 43(6): 2217-2225. |
[15] | 孙李星, 孙婷婷, 王海清, 吴淑芳, 王小烨, 刘天雅, 张宇辰. Lewis酸催化下3-烷基-2-吲哚烯与α,β-不饱和N-磺酰基亚胺的[2+4]环化反应[J]. 有机化学, 2023, 43(6): 2178-2188. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||