有机化学 ›› 2023, Vol. 43 ›› Issue (1): 254-264.DOI: 10.6023/cjoc202206057 上一篇 下一篇
所属专题: 有机氟化学虚拟合辑
研究论文
雷盼盼a, 陈沁琳a, 陈航a, 周洋a, 敬林海a,*(), 汪伟a,b,*(), 陈芬儿b,c,*()
收稿日期:
2022-06-30
修回日期:
2022-07-30
发布日期:
2022-08-25
通讯作者:
敬林海, 汪伟, 陈芬儿
基金资助:
Panpan Leia, Qinlin Chena, Hang Chena, Yang Zhoua, Linhai Jina(), Wei Wanga,b(), Fener Chenb,c()
Received:
2022-06-30
Revised:
2022-07-30
Published:
2022-08-25
Contact:
Linhai Jin, Wei Wang, Fener Chen
Supported by:
文章分享
报道了光催化N-氟代苯甲酰胺的1,5-氢原子转移和苄基自由基的偶联反应. 该反应表现出了良好的底物适用性和官能团兼容性, 以较好的产率得到了一系列重要的联苄基类化合物. 更重要的是, 该方法也适用于N-氟代的脂肪族酰胺.
雷盼盼, 陈沁琳, 陈航, 周洋, 敬林海, 汪伟, 陈芬儿. 可见光促进N-氟代酰胺的1,5-氢迁移和自由基偶联反应合成联苄基衍生物[J]. 有机化学, 2023, 43(1): 254-264.
Panpan Lei, Qinlin Chen, Hang Chen, Yang Zhou, Linhai Jin, Wei Wang, Fener Chen. Synthesis of Bibenzyl Derivatives via Visible-Light-Promoted 1,5-Hydrogen Atom Transfer/Radical Coupling Reactions of N-Fluorocarboxamides[J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 254-264.
Entry | Photocatalyst | λ/nm | Base | Solvent | Yieldb/% |
---|---|---|---|---|---|
1 | fac-Ir(ppy)3 | 420 | Et3N | CH3CN | 50 |
2 | fac-Ir(ppy)3 | 420 | Et3N | DCM | 55 |
3 | fac-Ir(ppy)3 | 420 | Et3N | DMF | 30 |
4 | fac-Ir(ppy)3 | 420 | Et3N | DMSO | 32 |
5 | fac-Ir(ppy)3 | 420 | Et3N | THF | 60 |
6 | fac-Ir(ppy)3 | 420 | Et3N | 2-MeTHF | 95 |
7 | fac-Ir(ppy)3 | 420 | DBU | 2-MeTHF | 30 |
8 | fac-Ir(ppy)3 | 420 | K2CO3 | 2-MeTHF | 35 |
9 | fac-Ir(ppy)3 | 420 | K3PO4 | 2-MeTHF | 50 |
10 | fac-Ir(ppy)3 | 420 | NaOtBu | 2-MeTHF | 22 |
11 | fac-Ir(ppy)3 | 420 | — | 2-MeTHF | 38 |
12 | fac-Ir(p-Fppy)3 | 420 | Et3N | 2-MeTHF | 45 |
13 | [Ir(dFCF3ppy)2(bpy)]PF6 | 420 | Et3N | 2-MeTHF | 65 |
14 | Ru(phen)3(PF6)2 | 420 | Et3N | 2-MeTHF | 57 |
15 | 4-CzIPN | 420 | Et3N | 2-MeTHF | 0 |
16 | Eosin Y | 420 | Et3N | 2-MeTHF | 10 |
17 | fac-Ir(ppy)3 | 400 | Et3N | 2-MeTHF | 70 |
18 | fac-Ir(ppy)3 | 365 | Et3N | 2-MeTHF | 90 |
19c | fac-Ir(ppy)3 | — | Et3N | 2-MeTHF | 0 |
Entry | Photocatalyst | λ/nm | Base | Solvent | Yieldb/% |
---|---|---|---|---|---|
1 | fac-Ir(ppy)3 | 420 | Et3N | CH3CN | 50 |
2 | fac-Ir(ppy)3 | 420 | Et3N | DCM | 55 |
3 | fac-Ir(ppy)3 | 420 | Et3N | DMF | 30 |
4 | fac-Ir(ppy)3 | 420 | Et3N | DMSO | 32 |
5 | fac-Ir(ppy)3 | 420 | Et3N | THF | 60 |
6 | fac-Ir(ppy)3 | 420 | Et3N | 2-MeTHF | 95 |
7 | fac-Ir(ppy)3 | 420 | DBU | 2-MeTHF | 30 |
8 | fac-Ir(ppy)3 | 420 | K2CO3 | 2-MeTHF | 35 |
9 | fac-Ir(ppy)3 | 420 | K3PO4 | 2-MeTHF | 50 |
10 | fac-Ir(ppy)3 | 420 | NaOtBu | 2-MeTHF | 22 |
11 | fac-Ir(ppy)3 | 420 | — | 2-MeTHF | 38 |
12 | fac-Ir(p-Fppy)3 | 420 | Et3N | 2-MeTHF | 45 |
13 | [Ir(dFCF3ppy)2(bpy)]PF6 | 420 | Et3N | 2-MeTHF | 65 |
14 | Ru(phen)3(PF6)2 | 420 | Et3N | 2-MeTHF | 57 |
15 | 4-CzIPN | 420 | Et3N | 2-MeTHF | 0 |
16 | Eosin Y | 420 | Et3N | 2-MeTHF | 10 |
17 | fac-Ir(ppy)3 | 400 | Et3N | 2-MeTHF | 70 |
18 | fac-Ir(ppy)3 | 365 | Et3N | 2-MeTHF | 90 |
19c | fac-Ir(ppy)3 | — | Et3N | 2-MeTHF | 0 |
[1] |
(a) Chen, Y.; Yu, H.; Lian, X. Trop. J. Pharm. Res. 2015, 14, 2055.
doi: 10.4314/tjpr.v14i11.15 pmid: 28197691 |
(b) Zhang, Z.; Zhang, D.; Dou, M.; Li, Z.; Zhang, J.; Zhao, X. Biomed. Pharmacother. 2016, 84, 1350.
doi: 10.1016/j.biopha.2016.10.074 pmid: 28197691 |
|
(c) Teixeira da Silva, J. A.; Ng, T. B. Appl. Microbiol. Biotechnol. 2017, 101, 2227.
doi: 10.1007/s00253-017-8169-9 pmid: 28197691 |
|
(d) Li, X.-W.; Chen, H.-P.; He, Y.-Y.; Chen, W.-L.; Chen, J.-W.; Gao, L.; Hu, H.-Y.; Wang, J. Molecules 2018, 23, 3245.
doi: 10.3390/molecules23123245 pmid: 28197691 |
|
[2] |
(a) Majumder, P. L.; Guha, S.; Sen, S. Phytochemistry 1999, 52, 1365.
doi: 10.1016/S0031-9422(99)00370-2 |
(b) Choonong, R.; Sermpradit, W.; Kitisripanya, T.; Sritularak, B.; Putalun, W. ScienceAsia 2019, 45, 245.
doi: 10.2306/scienceasia1513-1874.2019.45.245 |
|
[3] |
Zhang, C.; Liu, S.-J.; Yang, L.; Yuan, M.-Y.; Li, J.-Y.; Hou, B.; Li, H.-M.; Yang, X.-Z.; Ding, C.-C.; Hu, J.-M. Fitoterapia 2017, 122, 76.
doi: S0367-326X(17)30932-2 pmid: 28844931 |
[4] |
(a) Busaranon, K.; Plaimee, P.; Sritularak, B.; Chanvorachote, P. J. Nat. Med. 2016, 70, 18.
doi: 10.1007/s11418-015-0931-7 pmid: 28138710 |
(b) Zhang, L.; Fang, Y.; Xu, X. F.; Jin, D. Y. Mol. Med. Rep. 2017, 15, 1195.
doi: 10.3892/mmr.2017.6144 pmid: 28138710 |
|
(c) Guan, L.; Zhou, J.; Lin, Q.; Zhu, H.; Liu, W.; Liu, B.; Zhang, Y.; Zhang, J.; Gao, J.; Feng, F.; Qu, W. Bioorg. Med. Chem. 2019, 27, 2657.
doi: 10.1016/j.bmc.2019.04.027 pmid: 28138710 |
|
(d) Zhang, Y.; Zhang, Q.; Wei, F.; Liu, N. OncoTargets Ther. 2019, 12, 5457.
doi: 10.2147/OTT.S200161 pmid: 28138710 |
|
(e) He, L.; Su, Q.; Bai, L.; Li, M.; Liu, J.; Liu, X.; Zhang, C.; Jiang, Z.; He, J.; Shi, J.; Huang, S.; Guo, L. Eur. J. Med. Chem. 2020, 204, 112530.
doi: 10.1016/j.ejmech.2020.112530 pmid: 28138710 |
|
[5] |
Kao, T.-I.; Chen, P.-J.; Wang, Y.-H.; Tseng, H.-H.; Chang, S.-H.; Wu, T.-S.; Yang, S.-H.; Lee, Y.-T.; Hwang, T.-L. Br. J. Pharmacol. 2021, 178, 4069.
doi: 10.1111/bph.15597 |
[6] |
Cuc, N. T.; Yen, D. T. H.; Yen, P. H.; Hang, D. T. T.; Tai, B. H.; Seo, Y.; Namkung, W.; Kim, S. H.; Cuong, P. V.; Kiem, P. V.; Nhiem, N. X.; Ngoc, T. M. Nat. Prod. Res. 2021, 1.
|
[7] |
Hitt, D. M.; Zwicker, J. D.; Chao, C.-K.; Patel, S. A.; Gerdes, J. M.; Bridges, R. J.; Thompson, C. M. Neurochem. Res. 2021, 46, 494.
doi: 10.1007/s11064-020-03182-0 |
[8] |
Sun, M.; Ma, X.; Shao, S.; Jiang, J.; Li, J.; Tian, J.; Zhang, J.; Li, L.; Ye, F.; Li, S. Org. Biomol. Chem. 2022, 20, 4736.
doi: 10.1039/D2OB00489E |
[9] |
Wang, J.; Tsuchiya, M.; Tateno, T.; Sakuragi, H.; Tokumaru, K. Chem. Lett. 1992, 21, 563.
doi: 10.1246/cl.1992.563 |
[10] |
Wang, J.; Tsuchiya, M.; Tokumaru, K.; Sakuragi, H. Bull. Chem. Soc. Jpn. 1995, 68, 1213.
doi: 10.1246/bcsj.68.1213 |
[11] |
Chai, C. L. L.; Christen, D.; Halton, B.; Neidlein, R.; Starr, M. A. E. Aust. J. Chem. 1995, 48, 577.
doi: 10.1071/CH9950577 |
[12] |
Blangetti, M.; Fleming, P.; O’Shea, D. F. J. Org. Chem. 2012, 77, 2870.
doi: 10.1021/jo3000805 pmid: 22329345 |
[13] |
(a) Gilman, H.; Gorsich, R. D. J. Am. Chem. Soc. 1955, 77, 3134.
doi: 10.1021/ja01616a064 |
(b) Inaba, S.-I.; Matsumoto, H.; Rieke, R. D. Tetrahedron Lett. 1982, 23, 4215.
|
|
(c) Ginah, F. O.; Donovan, T. A.; Suchan, S. D.; Pfennig, D. R.; Ebert, G. W. J. Org. Chem. 1990, 55, 584.
doi: 10.1021/jo00289a037 |
|
(d) Aitken, R. A.; Hodgson, P. K. G.; Morrison, J. J.; Oyewale, A. O. J. Chem. Soc., Perkin Trans. 1 2002, 402.
|
|
[14] |
Sato, K.; Inoue, Y.; Mori, T.; Sakaue, A.; Tarui, A.; Omote, M.; Kumadaki, I.; Ando, A. Org. Lett. 2014, 16, 3756.
doi: 10.1021/ol501619w |
[15] |
Ping, K.; Alam, M.; Kahnert, S. R.; Bhadoria, R.; Mere, A.; Mikli, V.; Käärik, M.; Aruväli, J.; Paiste, P.; Kikas, A.; Kisand, V.; Järving, I.; Leis, J.; Kongi, N.; Starkov, P. Mater. Adv. 2021, 2, 4009.
doi: 10.1039/D1MA00414J |
[16] |
(a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
doi: 10.1039/b913880n pmid: 32195482 |
(b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 53223.
pmid: 32195482 |
|
(c) Hopkinson, M. N.; Sahoo, B.; Li, J.-L.; Glorius, F. Chem.-Eur. J. 2014, 20, 3874.
doi: 10.1002/chem.201304823 pmid: 32195482 |
|
(d) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
doi: 10.1021/acs.chemrev.6b00057 pmid: 32195482 |
|
(e) Xiao, J.-D.; Li, D.-D.; Jiang, H.-L. Sci. Sin.: Chim. 2018, 48, 1058.
doi: 10.1360/N032018-00035 pmid: 32195482 |
|
(f) Chen, Y.-Y.; Lu, L.-Q.; Yu, D.-G.; Xiao, W.-J. Sci. China: Chem. 2019, 62, 24.
doi: 10.1007/s11426-018-9399-2 pmid: 32195482 |
|
(g) Cai, B. G.; Xuan, J.; Xiao, W.-J. Sci. Bull. 2019, 64, 337.
doi: 10.1016/j.scib.2019.02.002 pmid: 32195482 |
|
(h) Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Xiao, W.-J.; Chen, J.-R. Acc. Chem. Res. 2020, 53, 1066.
doi: 10.1021/acs.accounts.0c00090 pmid: 32195482 |
|
(i) Xuan, J.; He, X.-K.; Xiao, W.-J. Chem. Soc. Rev. 2020, 49, 2546.
doi: 10.1039/c9cs00523d pmid: 32195482 |
|
(j) Sun, G. P.; Zuo, M. Z.; Qian, W. R.; Jiao, J. M.: Hu, X. Y.; Wang, L. Y. Green Synth. Catal. 2021, 2, 32.
pmid: 32195482 |
|
[17] |
(a) Majetich, G.; Wheless, K. Tetrahedron 1995, 51, 7095.
doi: 10.1016/0040-4020(95)00406-X |
(b) Xiong, N.; Li, Y.; Zeng, R. Org. Lett. 2021, 23, 8968.
doi: 10.1021/acs.orglett.1c03488 |
|
(c) Zhong, L.-J.; Xiong, Z.-Q.; Ouyang, X.-H.; Li, Y.; Song, R.-J.; Sun, Q.; Li, J.-H. J. Am. Chem. Soc. 2022, 144, 339.
doi: 10.1021/jacs.1c10053 |
|
(d) Yu, M.-M.; Gao, Y.-H.; Zhang, L.; Zhang, Y.-J.; Yi, H.; Huang, Z.-L.; Lei, A.-W. Green Chem. 2022, 24, 1445-1450.
doi: 10.1039/D1GC04676D |
|
[18] |
(a) Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Nature 2016, 539, 268.
doi: 10.1038/nature19811 pmid: 34114304 |
(b) Chu, J. C. K.; Rovis, T. Nature 2016, 539, 272.
doi: 10.1038/nature19810 pmid: 34114304 |
|
(c) Li, Z.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2018, 57, 13288.
doi: 10.1002/anie.201807623 pmid: 34114304 |
|
(d) Na, C. G.; Alexanian, E. J. Angew. Chem., Int. Ed. 2018, 57, 13106.
doi: 10.1002/anie.201806963 pmid: 34114304 |
|
(e) Ayer, S. K.; Roizen, J. L. J. Org. Chem. 2019, 84, 3508.
doi: 10.1021/acs.joc.9b00105 pmid: 34114304 |
|
(f) Thullen, S. M.; Treacy, S. M.; Rovis, T. J. Am. Chem. Soc. 2019, 141, 14062.
doi: 10.1021/jacs.9b07014 pmid: 34114304 |
|
(g) Song, L.; Fu, D.-M.; Chen, L.; Jiang, Y.-X.; Ye, J.-H.; Zhu, L.; Lan, Y.; Fu, Q.; Yu, D.-G. Angew. Chem., Int. Ed. 2020, 59, 21121.
doi: 10.1002/anie.202008630 pmid: 34114304 |
|
(h) Wang, L.; Xia, Y.; Derdau, V.; Studer, A. Angew. Chem., Int. Ed. 2021, 60, 18645.
doi: 10.1002/anie.202104254 pmid: 34114304 |
|
(i) Guo, W.; Wang, Q.; Zhu, J. Chem. Soc. Rev. 2021, 50, 7359.
doi: 10.1039/D0CS00774A pmid: 34114304 |
|
[19] |
(a) Man, Y.-Q.; Liu, S.-W.; Xu, B.; Zeng, X.-J. Org. Lett. 2022, 24, 944.
doi: 10.1021/acs.orglett.1c04317 |
(b) Holmberg-Douglas, N.; Nicewicz, D. A. Chem. Rev. 2022, 122, 1925.
doi: 10.1021/acs.chemrev.1c00311 |
|
(c) Murray, P. R. D.; Cox, J. H.; Chiappini, N. D.; Roos, C. B.; McLoughlin, E. A.; Hejna, B. G.; Nguyen, S. T.; Ripberger, H. H.; Ganley, J. M.; Tsui, E.; Shin, N. Y.; Koronkiewicz, B.; Qiu, G.; Knowles, R. R. Chem. Rev. 2022, 122, 2017.
doi: 10.1021/acs.chemrev.1c00374 |
|
[20] |
Cera, G.; Haven, T.; Ackermann, L. Angew. Chem., Int. Ed. 2016, 55, 1484.
doi: 10.1002/anie.201509603 |
[21] |
(a) Groendyke, B. J.; AbuSalim, D. I.; Cook, S. P. J. Am. Chem. Soc. 2016, 138, 12771.
pmid: 27676449 |
(b) Guo, Q.-P.; Peng, Q.; Chai, H.-L.; Huo, Y.-M.; Wang, S.; Xu, Z.-Q. Nat. Commun. 2020, 11, 1463.
doi: 10.1038/s41467-020-15167-2 pmid: 27676449 |
|
[22] |
Zhao, Y.-N.; Luo, Y.-C.; Wang, Z.-Y.; Xu, P.-F. Chem. Commun. 2018, 54, 3993.
doi: 10.1039/C8CC01486H |
[1] | 陈雯雯, 张琴, 张松月, 黄芳芳, 张馨尹, 贾建峰. 无光催化剂条件下可见光诱导炔基碘和亚磺酸钠偶联反应[J]. 有机化学, 2024, 44(2): 584-592. |
[2] | 朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17. |
[3] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[4] | 徐伟, 翟宏斌, 程斌, 汪太民. 可见光诱导的钯催化Heck反应[J]. 有机化学, 2023, 43(9): 3035-3054. |
[5] | 樊思捷, 董武恒, 梁彩云, 王贵超, 袁瑶, 尹作栋, 张兆国. 可见光诱导的自由基环化反应构建4-芳基-1,2-二氢萘类化合物[J]. 有机化学, 2023, 43(9): 3277-3286. |
[6] | 杨晓娜, 郭宏宇, 周荣. 可见光促进有机硅化合物参与的化学转化[J]. 有机化学, 2023, 43(8): 2720-2742. |
[7] | 吴敏, 刘博, 袁佳龙, 付强, 汪锐, 娄大伟, 梁福顺. 可见光媒介的C—S键构建反应研究进展[J]. 有机化学, 2023, 43(7): 2269-2292. |
[8] | 高艳华, 张银潘, 张妍, 宋涛, 杨勇. 可见光驱动表面富含氧空位Nb2O5催化醇氧化反应[J]. 有机化学, 2023, 43(7): 2572-2579. |
[9] | 刘静, 郝健, 沈其龙. 可见光促进的含色氨酸寡肽与YlideFluor试剂的直接三氟甲基化反应研究[J]. 有机化学, 2023, 43(4): 1517-1524. |
[10] | 赵金晓, 魏彤辉, 柯森, 李毅. 可见光催化合成二氟烷基取代的多环吲哚化合物[J]. 有机化学, 2023, 43(3): 1102-1114. |
[11] | 杜昌远, 唐裕才, 段京林, 杨碧玉, 何宇鹏, 周谦, 刘学文. 可见光促进有机染料催化2-芳基吲哚自由基烷氧羰基化反应研究[J]. 有机化学, 2023, 43(12): 4268-4276. |
[12] | 赵瑜, 段玉荣, 史时辉, 白育斌, 黄亮珠, 杨晓军, 张琰图, 冯彬, 张建波, 张秋禹. 可见光促进高价碘(III)试剂参与反应的研究进展[J]. 有机化学, 2023, 43(12): 4106-4140. |
[13] | 汤娟, 胡家榆, 祝志强, 蒲守智. 可见光诱导有机膦促进脱氧官能化反应研究进展[J]. 有机化学, 2023, 43(12): 4036-4056. |
[14] | 陈祥, 欧阳文韬, 李潇, 何卫民. 可见光诱导有机光催化合成二氟乙基苯并噁嗪[J]. 有机化学, 2023, 43(12): 4213-4219. |
[15] | 陈凤娟, 刘罗, 张子露, 曾伟. 可见光催化有机硅的合成研究进展[J]. 有机化学, 2023, 43(10): 3454-3469. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||