有机化学 ›› 2024, Vol. 44 ›› Issue (2): 349-377.DOI: 10.6023/cjoc202308012 上一篇 下一篇
综述与进展
收稿日期:
2023-08-13
修回日期:
2023-09-30
发布日期:
2023-10-30
作者简介:
基金资助:
Wanting Chen, Xiongwei Zhong, Jiale Xing, Changshu Wu, Yang Gao()
Received:
2023-08-13
Revised:
2023-09-30
Published:
2023-10-30
Contact:
E-mail: About author:
Supported by:
文章分享
C—N轴手性化合物在天然产物、手性药物以及手性配体等诸多领域有着广泛应用, 通过不对称催化高效构建 C—N轴手性受到越来越广泛的关注. 此文旨在综述近年国内外在C—N轴手性化合物不对称催化合成方面取得的研究进展, 主要从前手性分子的去对称化或外消旋体的动力学拆分、C—N轴的阻旋选择性官能团化以及阻旋选择性C—N偶联等三方面进行讨论. 重点关注不对称催化体系的发展以及控制对映选择性的关键因素, 并对该领域存在的问题和未来发展方向进行讨论.
陈宛婷, 钟雄威, 邢佳乐, 吴昌书, 高杨. C—N轴手性化合物的不对称催化合成研究进展[J]. 有机化学, 2024, 44(2): 349-377.
Wanting Chen, Xiongwei Zhong, Jiale Xing, Changshu Wu, Yang Gao. Progress in Asymmetric Catalytic Synthesis of C—N Axis Chiral Compounds[J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 349-377.
[1] |
(a) Cheng, J. K.; Xiang, S.-H.; Li, S.; Ye, L.; Tan, B. Chem. Rev. 2021, 121, 4805.
doi: 10.1021/acs.chemrev.0c01306 |
(b) Cheng, J. K.; Xiang, S.-H.; Tan, B. Acc. Chem. Res. 2022, 55, 2920.
doi: 10.1021/acs.accounts.2c00509 |
|
(c) Da, B.; Xiang, S.; Li, S.; Tan, B. Chin. J. Chem. 2021, 39, 1787.
doi: 10.1002/cjoc.v39.7 |
|
(d) Wang, Y.-B.; Tan, B. Acc. Chem. Res. 2018, 51, 534.
doi: 10.1021/acs.accounts.7b00602 |
|
[2] |
(a) Kitagawa O. Acc. Chem. Res. 2021, 54, 719.
doi: 10.1021/acs.accounts.0c00767 |
(b) Shi, B.-F.; Colobert, F. Chem. Catal. 2021, 1, 485.
|
|
[3] |
Wu, Y.-J.; Liao, G.; Shi, B.-F. Green Synth. Catal. 2022, 3, 117.
|
[4] |
(a) Curran, D. P.; Qi, H.; Geib, S. J.; DeMello, N. C. J. Am. Chem. Soc. 1994, 116, 3131.
doi: 10.1021/ja00086a056 |
(b) Duan, W.-L.; Imazaki, Y.; Shintani, R.; Hayashi, T. Tetrahedro. 2007, 63, 8529.
doi: 10.1016/j.tet.2007.05.025 |
|
[5] |
Wang, J.; Chen, H.; Kong, L.; Wang, F.; Lan, Y.; Li, X. ACS Catal. 2021, 11, 9151.
doi: 10.1021/acscatal.1c02450 |
[6] |
Wang, J.; Li, X. Sci. China Chem. 2023, 66, 2046.
doi: 10.1007/s11426-023-1646-0 |
[7] |
Sun, F.; Wang, T.; Cheng, G.-J.; Fang, X. ACS Catal. 2021, 11, 7578.
doi: 10.1021/acscatal.1c01971 |
[8] |
Gu, X.-W.; Sun, Y.-L.; Xie, J.-L.; Wang, X.-B.; Xu, Z.; Yin, G.-W.; Li, L.; Yang, K.-F.; Xu, L.-W. Nat. Commun. 2020, 11, 2904.
doi: 10.1038/s41467-020-16716-5 |
[9] |
Liu, H.-C.; Tao, H.-Y.; Cong, H.; Wang, C.-J. J. Org. Chem. 2016, 81, 3752.
doi: 10.1021/acs.joc.6b00396 |
[10] |
(a) Di Iorio, N.; Righi, P.; Mazzanti, A.; Mancinelli, M.; Ciogli, A.; Bencivenni, G. J. Am. Chem. Soc. 2014, 136, 10250.
doi: 10.1021/ja505610k |
(b) Eudier, F.; Righi, P.; Mazzanti, A.; Ciogli, A.; Bencivenni, G. Org. Lett. 2015, 17, 1728.
doi: 10.1021/acs.orglett.5b00509 |
|
(c) Mondal, S.; Mukherjee, S. Org. Lett. 2022, 24, 8300.
doi: 10.1021/acs.orglett.2c03272 |
|
[11] |
(a) Di Iorio, N.; Champavert, F.; Erice, A.; Righi, P.; Mazzanti, A.; Bencivenni, G. Tetrahedro. 2016, 72, 5191.
doi: 10.1016/j.tet.2016.02.052 |
(b) Di Iorio, N.; Soprani, L.; Crotti, S.; Marotta, E.; Mazzanti, A.; Righi, P.; Bencivenni, G. Synthesi. 2017, 49, 1519.
doi: 10.1055/s-0036-1588408 |
|
[12] |
Zhang, J.; Zhang, Y.; Lin, L.; Yao, Q.; Liu, X.; Feng, X. Chem. Commun. 2015, 51, 10554.
doi: 10.1039/C5CC03203B |
[13] |
(a) Zhuo, S.; Zhu, T.; Zhou, L.; Mou, C.; Chai, H.; Lu, Y.; Pan, L.; Jin, Z.; Chi, Y. R. Angew. Chem.. Int. Ed. 2019, 58, 1784.
doi: 10.1002/anie.v58.6 |
(b) Barik, S.; Shee, S.; Das, S.; Gonnade, R. G.; Jindal, G.; Mukherjee, S.; Biju, A. T. Angew. Chem.. Int. Ed. 2021, 60, 12264.
doi: 10.1002/anie.v60.22 |
|
[14] |
Jin, J.; Huang, X.; Xu, J.; Li, T.; Peng, X.; Zhu, X.; Zhang, J.; Jin, Z.; Chi, Y. R. Org. Lett. 2021, 23, 3991.
doi: 10.1021/acs.orglett.1c01191 |
[15] |
Zhang, J.-W.; Xu, J.-H.; Cheng, D.-J.; Shi, C.; Liu, X.-Y.; Tan, B. Nat. Commun. 2016, 7, 10677.
doi: 10.1038/ncomms10677 |
[16] |
Zhang, L.-L.; Zhang, J.-W.; Xiang, S.-H.; Guo, Z.; Tan, B. Org. Lett. 2018, 20, 6022.
doi: 10.1021/acs.orglett.8b02361 |
[17] |
Zhang, L.; Xiang, S.-H.; Wang, J.; Xiao, J.; Wang, J.-Q.; Tan, B. Nat. Commun. 2019, 10, 566.
doi: 10.1038/s41467-019-08447-z pmid: 30718716 |
[18] |
Dai, L.; Zhou, X.; Guo, J.; Dai, X.; Huang, Q.; Lu, Y. Nat. Commun. 2023, 14, 4813.
doi: 10.1038/s41467-023-40491-8 |
[19] |
Hirai, M.; Terada, S.; Yoshida, H.; Ebine, K.; Hirata, T.; Kitagawa, O. Org. Lett. 2016, 18, 5700.
doi: 10.1021/acs.orglett.6b02865 |
[20] |
(a) Diener, M. E.; Metrano, A. J.; Kusano, S.; Miller, S. J. J. Am. Chem. Soc. 2015, 137, 12369.
doi: 10.1021/jacs.5b07726 |
(b) Crawford, J. M.; Stone, E. A.; Metrano, A. J.; Miller, S. J.; Sigman, M. S. J. Am. Chem. Soc. 2018, 140, 868.
doi: 10.1021/jacs.7b11303 |
|
[21] |
Vaidya, S. D.; Toenjes, S. T.; Yamamoto, N.; Maddox, S. M.; Gustafson, J. L. J. Am. Chem. Soc. 2020, 142, 2198.
doi: 10.1021/jacs.9b12994 pmid: 31944689 |
[22] |
Kim, A.; Kim, A.; Park, S.; Kim, S.; Jo, H.; Ok, K. M.; Lee, S. K.; Song, J.; Kwon, Y. Angew. Chem.. Int. Ed. 2021, 60, 12279.
doi: 10.1002/anie.v60.22 |
[23] |
Bie, J.; Lang, M.; Wang, J. Org. Lett. 2018, 20, 5866.
doi: 10.1021/acs.orglett.8b02538 |
[24] |
(a) Kitagawa, O.; Kohriyama, M.; Taguchi, T. J. Org. Chem. 2002, 67, 8682.
pmid: 31117580 |
(b) Kitagawa, O.; Takahashi, M.; Kohriyama, M.; Taguchi, T. J. Org. Chem. 2003, 68, 9851.
pmid: 31117580 |
|
(c) Liu, Y.; Feng, X.; Du, H. Org. Biomol. Chem. 2015, 13, 125.
doi: 10.1039/C4OB01087F pmid: 31117580 |
|
(d) Kikuchi, Y.; Nakamura, C.; Matsuoka, M.; Asami, R.; Kitagawa, O. J. Org. Chem. 2019, 84, 8112.
doi: 10.1021/acs.joc.9b00989 pmid: 31117580 |
|
(e) Gao, Z.; Yan, C.-X.; Qian, J.; Yang, H.; Zhou, P.; Zhang, J.; Jiang, G. ACS Catal. 2021, 11, 6931.
doi: 10.1021/acscatal.1c01345 pmid: 31117580 |
|
[25] |
Li, S.-L.; Yang, C.; Wu, Q.; Zheng, H.-L.; Li, X.; Cheng, J.-P. J. Am. Chem. Soc. 2018, 140, 12836.
doi: 10.1021/jacs.8b06014 |
[26] |
Yang, G.-H.; Zheng, H.; Li, X.; Cheng, J.-P. ACS Catal. 2020, 10, 2324.
doi: 10.1021/acscatal.9b05443 |
[27] |
(a) Kitagawa, O.; Takahashi, M.; Yoshikawa, M.; Taguchi, T. J. Am. Chem. Soc. 2005, 127, 3676.
pmid: 17002389 |
(b) Kitagawa, O.; Yoshikawa, M.; Tanabe, H.; Morita, T.; Takahashi, M.; Dobashi, Y.; Taguchi, T. J. Am. Chem. Soc. 2006, 128, 12923.
pmid: 17002389 |
|
(c) Chen, L.-P.; Chen, J.-F.; Zhang, Y.-J.; He, X.-Y.; Han, Y.-F.; Xiao, Y.-T.; Lv, G.-F.; Lu, X.; Teng, F.; Sun, Q.; Li, J.-H. Org. Chem. Front. 2021, 8, 6067.
doi: 10.1039/D1QO01147B pmid: 17002389 |
|
[28] |
(a) Li, D.; Wang, S.; Ge, S.; Dong, S.; Feng, X. Org. Lett. 2020, 22, 5331.
doi: 10.1021/acs.orglett.0c01581 |
(b) Ong, J.-Y.; Ng, X. Q.; Lu, S.; Zhao, Y. Org. Lett. 2020, 22, 6447.
doi: 10.1021/acs.orglett.0c02266 |
|
[29] |
Shirakawa, S.; Liu, K.; Maruoka, K. J. Am. Chem. Soc. 2012, 134, 916.
doi: 10.1021/ja211069f pmid: 22208662 |
[30] |
(a) Yao, Q.-J.; Xie, P.-P.; Wu, Y.-J.; Feng, Y.-L.; Teng, M.-Y.; Hong, X.; Shi, B.-F. J. Am. Chem. Soc. 2020, 142, 18266.
doi: 10.1021/jacs.0c09400 |
(b) Jia, Z.-S.; Wu, Y.-J.; Yao, Q.-J.; Xu, X.-T.; Zhang, K.; Shi, B.-F. Org. Lett. 2022, 24, 304.
doi: 10.1021/acs.orglett.1c03967 |
|
(c) Wu, Y.-J.; Xie, P.-P.; Zhou, G.; Yao, Q.-J.; Hong, X.; Shi, B.-F. Chem. Sci. 2021, 12, 9391.
doi: 10.1039/D1SC01130H |
|
[31] |
Zhang, S.; Yao, Q.-J.; Liao, G.; Li, X.; Li, H.; Chen, H.-M.; Hong, X.; Shi, B.-F. ACS Catal. 2019, 9, 1956.
doi: 10.1021/acscatal.8b04870 |
[32] |
(a) Zhang, J.; Xu, Q.; Wu, J.; Fan, J.; Xie, M. Org. Lett. 2019, 21, 6361.
doi: 10.1021/acs.orglett.9b02243 |
(b) Dhawa, U.; Wdowik, T.; Hou, X.; Yuan, B.; Oliveira, J. C. A.; Ackermann, L. Chem. Sci. 2021, 12, 14182.
doi: 10.1039/D1SC04687J |
|
[33] |
Wang, L.; Yuan, W.; Wang, Z.; Luo, J.; Zhou, T.; Shi, B. Chin. J. Chem. 2023, 41, 2788.
doi: 10.1002/cjoc.v41.21 |
[34] |
Mi, R.; Ding, Z.; Yu, S.; Crabtree, R. H.; Li, X. J. Am. Chem. Soc. 2023, 145, 8150.
doi: 10.1021/jacs.3c01162 |
[35] |
(a) Takahashi, I.; Morita, F.; Kusagaya, S.; Fukaya, H.; Kitagawa, O. Tetrahedron: Asymmetry 2012, 23, 1657.
|
(b) Hirata, T.; Takahashi, I.; Suzuki, Y.; Yoshida, H.; Hasegawa, H.; Kitagawa, O. J. Org. Chem. 2016, 81, 318.
doi: 10.1021/acs.joc.5b02387 |
|
(c) Zhang, P.; Wang, X.; Xu, Q.; Guo, C.; Wang, P.; Lu, C.; Liu, R. Angew. Chem.. Int. Ed. 2021, 60, 21718.
doi: 10.1002/anie.v60.40 |
|
(d) Zhang, P.; Guo, C.-Q.; Yao, W.; Lu, C.-J.; Li, Y.; Paton, R. S.; Liu, R.-R. ACS Catal. 2023, 13, 7680.
doi: 10.1021/acscatal.3c00732 |
|
[36] |
Fan, X.; Zhang, X.; Li, C.; Gu, Z. ACS Catal. 2019, 9, 2286.
doi: 10.1021/acscatal.8b04789 |
[37] |
Liu, Z.-S.; Xie, P.-P.; Hua, Y.; Wu, C.; Ma, Y.; Chen, J.; Cheng, H.-G.; Hong, X.; Zhou, Q. Che. 2021, 7, 1917.
|
[38] |
(a) Ototake, N.; Morimoto, Y.; Mokuya, A.; Fukaya, H.; Shida, Y.; Kitagawa, O. Chem.-Eur. J. 2010, 16, 6752.
doi: 10.1002/chem.v16:23 |
(b) Wang, Z.; Zhu, L.; Li, C.; Liu, B.; Hong, X.; Ye, L. Angew. Chem.. Int. Ed. 2022, 61, e202201436.
|
|
[39] |
Liu, H.; Feng, W.; Kee, C. W.; Leow, D.; Loh, W.-T.; Tan, C.-H. Adv. Synth. Catal. 2010, 352, 3373.
doi: 10.1002/adsc.v352.18 |
[40] |
Mishra, K.; Guyon, D.; San Martin, J.; Yan, Y. J. Am. Chem. Soc. 2023, 145, 17242.
doi: 10.1021/jacs.3c04593 |
[41] |
Arunachalampillai, A.; Chandrappa, P.; Cherney, A.; Crockett, R.; Doerfler, J.; Johnson, G.; Kommuri, V. C.; Kyad, A.; McManus, J.; Murray, J.; Myren, T.; Fine Nathel, N.; Ndukwe, I.; Ortiz, A.; Reed, M.; Rui, H.; Silva Elipe, M. V.; Tedrow, J.; Wells, S.; Yacoob, S.; Yamamoto, K. Org. Lett. 2023, 25, 5856.
doi: 10.1021/acs.orglett.3c02117 |
[42] |
Sun, L.; Chen, H.; Liu, B.; Chang, J.; Kong, L.; Wang, F.; Lan, Y.; Li, X. Angew. Chem.. Int. Ed. 2021, 60, 8391.
doi: 10.1002/anie.v60.15 |
[43] |
Wang, P.; Wu, H.; Zhang, X.-P.; Huang, G.; Crabtree, R. H.; Li, X. J. Am. Chem. Soc. 2023, 145, 8417.
|
[44] |
Wang, B.; Xu, G.; Huang, Z.; Wu, X.; Hong, X.; Yao, Q.; Shi, B. Angew. Chem.. Int. Ed. 2022, 61, e202208912.
|
[45] |
Zhang, L.; Zhang, J.; Ma, J.; Cheng, D.-J.; Tan, B. J. Am. Chem. Soc. 2017, 139, 1714.
doi: 10.1021/jacs.6b09634 pmid: 28106384 |
[46] |
Wang, L.; Zhong, J.; Lin, X. Angew. Chem.. Int. Ed. 2019, 58, 15824.
doi: 10.1002/anie.v58.44 |
[47] |
(a) Kwon, Y.; Chinn, A. J.; Kim, B.; Miller, S. J. Angew. Chem.. Int. Ed. 2018, 57, 6251.
doi: 10.1002/anie.v57.21 |
(b) Kwon, Y.; Li, J.; Reid, J. P.; Crawford, J. M.; Jacob, R.; Sigman, M. S.; Toste, F. D.; Miller, S. J. J. Am. Chem. Soc. 2019, 141, 6698.
doi: 10.1021/jacs.9b01911 |
|
[48] |
Man, N.; Lou, Z.; Li, Y.; Yang, H.; Zhao, Y.; Fu, H. Org. Lett. 2020, 22, 6382.
doi: 10.1021/acs.orglett.0c02214 |
[49] |
Min, C.; Lin, Y.; Seidel, D. Angew. Chem.. Int. Ed. 2017, 56, 15353.
doi: 10.1002/anie.v56.48 |
[50] |
Wang, Y.-B.; Zheng, S.-C.; Hu, Y.-M.; Tan, B. Nat. Commu. 2017, 8, 15489.
|
[51] |
Li, T.; Mou, C.; Qi, P.; Peng, X.; Jiang, S.; Hao, G.; Xue, W.; Yang, S.; Hao, L.; Chi, Y. R.; Jin, Z. Angew. Chem.. Int. Ed. 2021, 60, 9362.
doi: 10.1002/anie.v60.17 |
[52] |
Wang, L.; Li, S.; Blümel, M.; Philipps, A. R.; Wang, A.; Puttreddy, R.; Rissanen, K.; Enders, D. Angew. Chem.. Int. Ed. 2016, 55, 11110.
doi: 10.1002/anie.v55.37 |
[53] |
An, Q.; Xia, W.; Ding, W.; Liu, H.; Xiang, S.; Wang, Y.; Zhong, G.; Tan, B. Angew. Chem.. Int. Ed. 2021, 60, 24888.
doi: 10.1002/anie.v60.47 |
[54] |
Augé, M.; Feraldi-Xypolia, A.; Barbazanges, M.; Aubert, C.; Fensterbank, L.; Gandon, V.; Kolodziej, E.; Ollivier, C. Org. Lett. 2015, 17, 3754.
doi: 10.1021/acs.orglett.5b01738 |
[55] |
Li, H.; Yan, X.; Zhang, J.; Guo, W.; Jiang, J.; Wang, J. Angew. Chem.. Int. Ed. 2019, 58, 6732.
doi: 10.1002/anie.v58.20 |
[56] |
(a) Wang, F.; Jing, J.; Zhao, Y.; Zhu, X.; Zhang, X.; Zhao, L.; Hu, P.; Deng, W.; Li, X. Angew. Chem.. Int. Ed. 2021, 60, 16628.
doi: 10.1002/anie.v60.30 |
(b) Wang, P.; Huang, Y.; Jing, J.; Wang, F.; Li, X. Org. Lett. 2022, 24, 2531.
doi: 10.1021/acs.orglett.2c00686 |
|
(c) Zhu, X.; Mi, R.; Yin, J.; Wang, F.; Li, X. Chem. Sci. 2023, 14, 7999.
doi: 10.1039/D3SC02714G |
|
[57] |
Zhou, L.; Li, Y.; Li, S.; Shi, Z.; Zhang, X.; Tung, C.-H.; Xu, Z. Chem. Sci. 2023, 14, 5182.
doi: 10.1039/d3sc00610g pmid: 37206396 |
[58] |
(a) Tanaka, K.; Takeishi, K.; Noguchi, K. J. Am. Chem. Soc. 2006, 128, 4586.
pmid: 17764192 |
(b) Oppenheimer, J.; Hsung, R. P.; Figueroa, R.; Johnson, W. L. Org. Lett. 2007, 9, 3969.
pmid: 17764192 |
|
(c) Oppenheimer, J.; Johnson, W. L.; Figueroa, R.; Hayashi, R.; Hsung, R. P. Tetrahedro. 2009, 65, 5001.
doi: 10.1016/j.tet.2009.03.078 pmid: 17764192 |
|
[59] |
Rae, J.; Frey, J.; Jerhaoui, S.; Choppin, S.; Wencel-Delord, J.; Colobert, F. ACS Catal. 2018, 8, 2805.
doi: 10.1021/acscatal.7b04343 |
[60] |
Frey, J.; Malekafzali, A.; Delso, I.; Choppin, S.; Colobert, F.; Wencel-Delord, J. Angew. Chem.. Int. Ed. 2020, 59, 8844.
doi: 10.1002/anie.v59.23 |
[61] |
(a) Sun, C.; Qi, X.; Min, X.-L.; Bai, X.-D.; Liu, P.; He, Y. Chem. Sci. 2020, 11, 10119.
doi: 10.1039/D0SC02828B |
(b) Zhang, X.; Gu, J.; Cui, W.; Ye, Z.; Yi, W.; Zhang, Q.; He, Y. Angew. Chem.. Int. Ed. 2022, 61, e202210456.
|
|
(c) Zou, J.; Yang, Y.; Gu, J.; Liu, F.; Ye, Z.; Yi, W.; He, Y. Angew. Chem.. Int. Ed. 2023, 62, e202310320.
|
|
(d) Wu, Y.-X.; Liu, Q.; Zhang, Q.; Ye, Z.; He, Y. Cell Rep. Phys. Sci. 2022, 3, 101005.
|
|
(e) Zhang, X.-L.; Qi, X.; Wu, Y.-X.; Liu, P.; He, Y. Cell Rep. Phys. Sci. 2021, 2, 100594.
|
|
[62] |
(a) Brandes, S.; Bella, M.; Kjærsgaard, A.; Jørgensen, K.A. Angew. Chem.. Int. Ed. 2006, 118, 1165.
doi: 10.1002/ange.v118:7 |
(b) Bai, H.-Y.; Tan, F.-X.; Liu, T.-Q.; Zhu, G.-D.; Tian, J.-M.; Ding, T.-M.; Chen, Z.-M.; Zhang, S.-Y. Nat. Commun. 2019, 10, 3063.
doi: 10.1038/s41467-019-10858-x |
|
[63] |
Xia, W.; An, Q.; Xiang, S.; Li, S.; Wang, Y.; Tan, B. Angew. Chem.. Int. Ed. 2020, 59, 6775.
doi: 10.1002/anie.v59.17 |
[64] |
Qin, J.; Zhou, T.; Zhou, T.; Tang, L.; Zuo, H.; Yu, H.; Wu, G.; Wu, Y.; Liao, R.; Zhong, F. Angew. Chem.. Int. Ed. 2022, 61, e202205159.
|
[65] |
Guo, C.; Lu, C.; Zhan, L.; Zhang, P.; Xu, Q.; Feng, J.; Liu, R. Angew. Chem.. Int. Ed. 2022, 61, e202212846.
|
[66] |
(a) Ren, Q.; Cao, T.; He, C.; Yang, M.; Liu, H.; Wang, L. ACS Catal. 2021, 11, 6135.
doi: 10.1021/acscatal.1c01232 |
(b) Niu, C.; Zhou, Y.; Chen, Q.; Zhu, Y.; Tang, S.; Yu, Z.-X.; Sun, J. Org. Lett. 2022, 24, 7428.
doi: 10.1021/acs.orglett.2c03003 |
[1] | 杨爽, 房新强. 氮杂环卡宾催化实现的动力学拆分近期研究进展[J]. 有机化学, 2024, 44(2): 448-480. |
[2] | 姜权彬. 经由氮杂邻联烯醌中间体合成轴手性化合物的研究进展[J]. 有机化学, 2024, 44(1): 159-172. |
[3] | 程春霞, 吴露平, 沙风, 伍新燕. 手性叔膦-酰胺不对称催化香豆素与Morita-Baylis-Hillman碳酸酯之间的插烯烯丙基烷基化反应[J]. 有机化学, 2023, 43(9): 3188-3195. |
[4] | 罗诚, 尹艳丽, 江智勇. P-手性膦氧化物的不对称合成研究进展[J]. 有机化学, 2023, 43(6): 1963-1976. |
[5] | 王海清, 杨爽, 张宇辰, 石枫. 邻羟基苄醇参与的催化不对称反应研究进展[J]. 有机化学, 2023, 43(3): 974-999. |
[6] | 曹伟地, 刘小华. 不对称催化质子化构建α-叔碳羰基化合物研究进展[J]. 有机化学, 2023, 43(3): 961-973. |
[7] | 方思强, 刘赞娇, 王天利. Atherton-Todd反应的研究进展[J]. 有机化学, 2023, 43(3): 1069-1083. |
[8] | 赵佳怡, 葛怡聪, 何川. 不对称催化Si—H/X—H脱氢偶联构筑硅中心手性[J]. 有机化学, 2023, 43(10): 3352-3366. |
[9] | 曾燕, 叶飞. 不对称催化构建硅立体中心化合物的新反应体系研究进展[J]. 有机化学, 2023, 43(10): 3388-3413. |
[10] | 赵薇, 刘京, 何向奎, 蒋豪, 陆良秋, 肖文精. 氮杂环卡宾(NHC)催化的联芳基二醛去对称化构建轴手性醛类化合物[J]. 有机化学, 2022, 42(8): 2504-2514. |
[11] | 代增进, 张绪穆, 殷勤. 铵盐为胺源的不对称还原胺化反应研究进展[J]. 有机化学, 2022, 42(8): 2261-2274. |
[12] | 李晖, 殷亮. 铜催化的直接型插烯反应研究进展[J]. 有机化学, 2022, 42(6): 1573-1585. |
[13] | 吴逾诸, 申盼盼, 段文增, 马玉道. 卡宾催化对亚甲基苯醌的不对称硼化反应的研究[J]. 有机化学, 2022, 42(5): 1483-1492. |
[14] | 徐萌萌, 蔡泉. 2-吡喃酮的催化不对称Diels-Alder反应研究进展[J]. 有机化学, 2022, 42(3): 698-713. |
[15] | 陈运荣, 刘炜, 杨晓瑜. 叔醇的动力学拆分研究进展[J]. 有机化学, 2022, 42(3): 679-697. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||