有机化学 ›› 2024, Vol. 44 ›› Issue (3): 892-902.DOI: 10.6023/cjoc202309024 上一篇 下一篇
综述与进展
收稿日期:
2023-09-22
修回日期:
2023-11-21
发布日期:
2024-04-02
基金资助:
Ruilin Gao, Lirong Wen, Weisi Guo()
Received:
2023-09-22
Revised:
2023-11-21
Published:
2024-04-02
Contact:
*E-mail: wsguo@qust.edu.cn
Supported by:
文章分享
有机电合成以无痕电子代替传统的化学氧化剂或还原剂, 具有绿色易放大等优势. 未活化C(sp3)—H键的官能团化可以将目标官能团直接引入分子中进行修饰, 避免预官能团化, 兼具原子经济性和步骤经济性. 随着有机电合成发展的日益成熟, 电化学促进未活化C(sp3)—H官能团化成为了有机合成的研究热点之一. 根据官能团类型对反应进行分类, 总结了近年来涉及未活化C(sp3)—H官能化的研究成果, 重点分析了反应优势、底物特点以及反应机理, 最后展望了面临的挑战及未来的发展趋势.
高瑞林, 文丽荣, 郭维斯. 电化学促进未活化C(sp3)—H官能团化研究进展[J]. 有机化学, 2024, 44(3): 892-902.
Ruilin Gao, Lirong Wen, Weisi Guo. Recent Advances in Electrochemical-Promoted Unactivated C(sp3)—H Functionalization[J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 892-902.
[1] |
Faraday M. Ann. Phys. 1834, 47, 438.
|
[2] |
Kolbe H. J. Prakt. Chem. 1847, 41, 138.
|
[3] |
Yan M.; Kawamata Y.; Baran P. S. Chem. Rev. 2017, 117, 1323.
|
[4] |
Xiong P.; Xu H.-C. Acc. Chem. Res. 2019, 52, 3339.
doi: 10.1021/acs.accounts.9b00472 |
[5] |
Yuan Y.; Yang Y.; Lei A. Chem. Soc. Rev. 2021, 50, 10058.
doi: 10.1039/D1CS00150G |
[6] |
Cheng X.; Lei A.; Mei T.-S.; Xu H.-C.; Xu K.; Zeng C. CCS Chem. 2022, 4, 1120.
doi: 10.31635/ccschem.021.202101451 |
[7] |
Tang H.-T.; Pan Y.-Z.; Pan Y.-M. Green Chem. 2023, 25, 8313.
doi: 10.1039/D3GC02106H |
[8] |
Li Y.; Wen L.; Guo W. Chem. Soc. Rev. 2023, 52, 1168.
doi: 10.1039/D3CS00009E |
[9] |
(a) He J.; Wasa M.; Chan K. S. L.; Shao Q.; Yu J.-Q. Chem. Rev. 2017, 117, 8754.
doi: 10.1021/acs.chemrev.6b00622 pmid: 35965690 |
(b) Golden D. L.; Suh S.-E.; Stahl S. S. Nat. Rev. Chem. 2022, 6, 405.
doi: 10.1038/s41570-022-00388-4 pmid: 35965690 |
|
[10] |
Liu B.; Romine A. M.; Rubel C. Z.; Engle K. M.; Shi B.-F. Chem. Rev. 2021, 121, 14957.
doi: 10.1021/acs.chemrev.1c00519 |
[11] |
White M. C.; Zhao J. J. Am. Chem. Soc. 2018, 140, 13988.
doi: 10.1021/jacs.8b05195 |
[12] |
Kawamata Y.; Yan M.; Liu Z.; Bao D.-H.; Chen J.; Starr J. T.; Baran P. S. J. Am. Chem. Soc. 2017, 139, 7448.
doi: 10.1021/jacs.7b03539 pmid: 28510449 |
[13] |
Saito M.; Kawamata Y.; Meanwell M.; Navratil R.; Chiodi D.; Carlson E.; Hu P.; Chen L.; Udyavara S.; Kingston C.; Tanwar M.; Tyagi S.; McKillican B. P.; Gichinga M. G.; Schmidt M. A.; Eastgate M. D.; Lamberto M.; He C.; Tang T.; Malapit C. A.; Sigman M. S.; Minteer S. D.; Neuroc M. K.; Baran P. S. J. Am. Chem. Soc. 2021, 143, 7859.
doi: 10.1021/jacs.1c03780 |
[14] |
(a) Che C. M.; Leung W. H. J. Chem. Soc., Chem. Commun. 1987, 18, 1376.
|
(b) Mack J. B. C.; Gipson J. D.; Bois J.; Sigman M. S. J. Am. Chem. Soc. 2017, 139, 9503.
doi: 10.1021/jacs.7b05469 |
|
[15] |
Robinson S. G.; Mack J. B. C.; Alektiar S. N.; Bois J.; Sigman M. S. Org. Lett. 2020, 22, 7060.
doi: 10.1021/acs.orglett.0c01313 pmid: 32419465 |
[16] |
(a) Huang Z.; Wang C.; Dong G. Angew. Chem., Int. Ed. 2016, 55, 5299.
doi: 10.1002/anie.v55.17 |
(b) Chen F.-J.; Zhao S.; Hu F.; Chen K.; Zhang Q.; Zhang S.-Q.; Shi B.-F. Chem. Sci. 2013, 4, 4187.
doi: 10.1039/c3sc51993g |
|
[17] |
Zhou L.; Lu W. Org. Lett. 2014, 16, 508.
doi: 10.1021/ol403393w |
[18] |
Yang Q.-L.; Li Y.-Q.; Ma C.; Fang P.; Zhang X.-J.; Mei T.-S. J. Am. Chem. Soc. 2017, 139, 3293.
doi: 10.1021/jacs.7b01232 |
[19] |
(a) Huang H.; Steiniger K. A.; Lambert T. H. J. Am. Chem. Soc. 2022, 144, 12567.
doi: 10.1021/jacs.2c01914 pmid: 35816101 |
(b) Li P.; Zhang T.; Mushtaq M. A.; Wu S.; Xiang X.; Yan D. Chem. Rec. 2021, 21, 841.
doi: 10.1002/tcr.v21.4 pmid: 35816101 |
|
[20] |
Shen T.; Li Y.-L.; Lai L.-C.; Ye K.-Y.; Lambert T. Nature 2023, 614, 275.
doi: 10.1038/s41586-022-05608-x |
[21] |
(a) Thirumurugan P.; Matosiuk D.; Jozwiak K. Chem. Rev. 2013, 113, 4905.
doi: 10.1021/cr200409f pmid: 23531040 |
(b) Meng G.; Guo T.; Ma T.; Zhang J.; Shen Y.; Sharpless K. B.; Dong J. Nature 2019, 574, 86.
doi: 10.1038/s41586-019-1589-1 pmid: 23531040 |
|
[22] |
Brase S.; Gil C.; Knepper K.; Zimmermann V. Angew. Chem., Int. Ed. 2005, 44, 5188.
doi: 10.1002/anie.v44:33 |
[23] |
(a) Sharma A.; Hartwig J. F. Nature 2015, 517, 600.
doi: 10.1038/nature14127 |
(b) Xia Y.; Wang L.; Studer A. Angew. Chem., Int. Ed. 2018, 57, 12940.
doi: 10.1002/anie.v57.39 |
|
[24] |
(a) Huang X.; Bergsten T. M.; Groves J. T. J. Am. Chem. Soc. 2015, 137, 5300.
doi: 10.1021/jacs.5b01983 |
(b) Suh S.-E.; Chen S.-J.; Mandal M.; Guzei I. A.; Cramer C. J.; Stahl S. S. J. Am. Chem. Soc. 2020, 142, 11388.
doi: 10.1021/jacs.0c05362 |
|
[25] |
Niu L.; Jiang C.; Liang Y.; Liu D.; Bu F.; Shi R.; Chen H.; Chowdhury D.-A.; Lei A. J. Am. Chem. Soc. 2020, 142, 17693.
doi: 10.1021/jacs.0c08437 |
[26] |
Meyer T. H.; Samanta R. C.; Vecchio A. D.; Ackermann L. Chem. Sci. 2021, 12, 2890.
doi: 10.1039/D0SC05924B |
[27] |
(a) Hou Z.-W.; Liu D.-J.; Xiong P.; Lai X.-L.; Song J.; Xu H.-C. Angew. Chem., Int. Ed. 2021, 60, 2943.
doi: 10.1002/anie.v60.6 |
(b) Wu J.; Zhou Y.; Zhou Y.; Chiang C.-W.; Lei A. ACS Catal. 2017, 7, 8320.
doi: 10.1021/acscatal.7b03551 |
|
[28] |
Zhang L.; Fu Y.; Liu C.; Sun M.; Cheng R.; Zhu W.; Qian X.; Ma Y.; Ye J. Nat. Commun. 2022, 13, 4138.
doi: 10.1038/s41467-022-31813-3 pmid: 35842447 |
[29] |
Crespi S.; Simeth N. A.; König B. Nat. Rev. Chem. 2019, 3, 133.
doi: 10.1038/s41570-019-0074-6 |
[30] |
Correia C. A.; Yang L.; Li C.-J. Org. Lett. 2011, 13, 4581.
doi: 10.1021/ol201774b |
[31] |
Hu A.; Guo J.-J.; Pan H.; Zuo Z. Science 2018, 361, 668.
doi: 10.1126/science.aat9750 |
[32] |
Xu P.; Chen P.-Y.; Xu H.-C. Angew. Chem., Int. Ed. 2020, 59, 14275.
doi: 10.1002/anie.v59.34 |
[33] |
Liu Y.; Shi B.; Liu Z.; Gao R.; Huang C.; Alhumade H.; Wang S.; Qi X.; Lei A. J. Am. Chem. Soc. 2021, 143, 20863.
doi: 10.1021/jacs.1c09341 |
[34] |
Capaldo L.; Quadri L. L.; Merli D.; Ravelli D. Chem. Commun. 2021, 57, 4424.
doi: 10.1039/D1CC01012C |
[35] |
Hagmann W. K. J. Med. Chem. 2008, 51, 4359.
doi: 10.1021/jm800219f |
[36] |
West J. G.; Bedell T. A.; Sorensen E. J. Angew. Chem., Int. Ed. 2016, 55, 8923.
doi: 10.1002/anie.v55.31 |
[37] |
Liu W.; Huang X.; Cheng M.-J.; Nielsen R. J.; Goddard W. A.; Groves J. T. Science 2012, 337, 1322.
doi: 10.1126/science.1222327 |
[38] |
Takahira Y.; Chen M.; Kawamata Y.; Mykhailiuk P.; Nakamura H.; Peters B. K.; Reisberg S. H.; Li C.; Chen L.; Hoshikawa T.; Shibuguchid T.; Baran P. S. Synlett 2019, 30, 1178.
doi: 10.1055/s-0037-1611737 |
[39] |
Zou L.; Wang X.; Xiang S.; Zheng W.; Lu Q. Angew. Chem., Int. Ed. 2023, e202301026.
|
[1] | 黄克金, 蔡金博, 王瑞革, 张永红, 王斌, 夏昱, 金伟伟, 李新勇, 刘晨江. 硼促进甘氨酸衍生物的电化学C(sp2)—H溴化反应[J]. 有机化学, 2024, 44(3): 989-996. |
[2] | Hasil Aman, 常瑞, 叶俊涛. 氧化型光电催化促进的C—H键官能团化反应研究进展[J]. 有机化学, 2024, 44(3): 728-747. |
[3] | 高淳, 刘欣, 王明慧, 刘淑贤, 朱婷婷, 张怡康, 郝二军, 杨启亮. 电化学不对称合成反应的研究进展[J]. 有机化学, 2024, 44(3): 673-727. |
[4] | 张剑, 梁万洁, 杨艺, 闫法超, 刘会. 联烯胺化合物的区域选择性双官能团化[J]. 有机化学, 2024, 44(2): 335-348. |
[5] | 朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17. |
[6] | 董江湖, 宣良明, 王池, 赵晨熙, 王海峰, 严琼姣, 汪伟, 陈芬儿. 无过渡金属或无光催化剂条件下可见光促进喹喔啉酮C(3)—H官能团化研究进展[J]. 有机化学, 2024, 44(1): 111-136. |
[7] | 王玉超, 刘晋彪, 何智涛. 钯催化共轭二烯的不对称氢官能团化[J]. 有机化学, 2023, 43(8): 2614-2627. |
[8] | 刘颖杰, 石岗庆, 仇格, 张鑫, 宋冬雪, 陈宁, 于淼, 许颖. 光/电催化醚α-位官能团化研究进展[J]. 有机化学, 2023, 43(8): 2664-2681. |
[9] | 钟赟哲, 陈颖, 俞磊, 周宏伟. 电化学介导羧酸与醇的酯化反应[J]. 有机化学, 2023, 43(8): 2855-2863. |
[10] | 许晓萍, 张翼飞, 莫小渝, 江俊. 铑催化3-重氮吲哚-2-亚胺与吡唑啉酮的C—H官能团化反应制备3-吡唑基吲哚[J]. 有机化学, 2023, 43(7): 2519-2527. |
[11] | 高师泉, 刘闯军, 杨俊锋, 张俊良. 钴催化的烯烃和炔烃的电化学还原偶联反应[J]. 有机化学, 2023, 43(4): 1559-1565. |
[12] | 潘彦年, 秦萧, 袁成凯, 鲁艺. 配体在Cp*Rh(III)催化C—H键官能团化反应中的应用[J]. 有机化学, 2023, 43(3): 924-948. |
[13] | 李落墨, 杨小会. 离子转移反应的研究进展[J]. 有机化学, 2023, 43(3): 1036-1044. |
[14] | 侯虹宇, 程元元, 陈彬, 佟振合, 吴骊珠. 光催化烯烃α-酰化反应[J]. 有机化学, 2023, 43(3): 1012-1022. |
[15] | 刘宁, 爨晓丹, 李慧, 段希焱. 烯胺酮α-官能团化反应的研究进展[J]. 有机化学, 2023, 43(2): 602-621. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||