有机化学 ›› 2021, Vol. 41 ›› Issue (2): 833-841.DOI: 10.6023/cjoc202007027 上一篇 下一篇
所属专题: 有机光催化虚拟合辑
研究简报
张帆a,b, 侯慧青b, 许秀枝b, 陈志涛b, 柯方b,*()
收稿日期:
2020-07-09
修回日期:
2020-08-20
发布日期:
2020-09-16
通讯作者:
柯方
作者简介:
基金资助:
Fan Zhanga,b, Huiqing Houb, Xiuzhi Xub, Zhitao Chenb, Fang Keb,*()
Received:
2020-07-09
Revised:
2020-08-20
Published:
2020-09-16
Contact:
Fang Ke
Supported by:
文章分享
通过在水相中可见光下2-氨基苯甲酰胺与苄醇氧化制备喹唑啉酮的环化反应, 应用廉价易得、操作简单的单质碘作为光催化剂, 在室温下反应获得较好收率的产物. 目标产物的最高产率可达92%, 为喹唑啉酮类化合物的合成提供了一种绿色经济的方法. 运用此策略合成的N-(2-氟-5-甲基苯基)-6-(2,2,2-三氟乙氧基)蝶啶-4-胺对肿瘤细胞具有明显的抑制活性.
张帆, 侯慧青, 许秀枝, 陈志涛, 柯方. 水相中可见光下苯甲醇氧化合成喹唑啉酮衍生物的研究[J]. 有机化学, 2021, 41(2): 833-841.
Fan Zhang, Huiqing Hou, Xiuzhi Xu, Zhitao Chen, Fang Ke. Visible-Light-Induced Preparation of Quinazolinones by Oxidation of Benzyl Alcohols in Water[J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 833-841.
Entry | Solvent | Cat. | Base | T/h | Yieldb/% |
---|---|---|---|---|---|
1 | CHCl3 | I2 | KOH | 12 | 30 |
2 | DMSO | I2 | KOH | 12 | 41 |
3 | THF | I2 | KOH | 12 | 40 |
4 | DMF | I2 | KOH | 12 | 44 |
5 | CH2Cl2 | I2 | KOH | 12 | 22 |
6 | CH3CN | I2 | KOH | 12 | 78 |
7 | H2O | I2 | KOH | 12 | 85 |
8c | H2O | Ru(bpy)3(PF6)2 | KOH | 12 | 85 |
9d | H2O | Ir(bpy)3 | KOH | 12 | 78 |
10c | H2O | Ru(bpz)3[PF6]2 | KOH | 12 | 80 |
11 | H2O | — | KOH | 12 | 11 |
12 | H2O | I2 | K3PO4 | 12 | 70 |
13 | H2O | I2 | K2CO3 | 12 | 73 |
14 | H2O | I2 | Cs2CO3 | 12 | 78 |
15 | H2 O | I2 | NaOH | 12 | 92 |
16 | H2O | I2 | — | 12 | trace |
17 | H2O | I2 | NaOH | 11 | 84 |
18 | H2O | I2 | NaOH | 13 | 92 |
19e | H2O | I2 | NaOH | 12 | 88 |
Entry | Solvent | Cat. | Base | T/h | Yieldb/% |
---|---|---|---|---|---|
1 | CHCl3 | I2 | KOH | 12 | 30 |
2 | DMSO | I2 | KOH | 12 | 41 |
3 | THF | I2 | KOH | 12 | 40 |
4 | DMF | I2 | KOH | 12 | 44 |
5 | CH2Cl2 | I2 | KOH | 12 | 22 |
6 | CH3CN | I2 | KOH | 12 | 78 |
7 | H2O | I2 | KOH | 12 | 85 |
8c | H2O | Ru(bpy)3(PF6)2 | KOH | 12 | 85 |
9d | H2O | Ir(bpy)3 | KOH | 12 | 78 |
10c | H2O | Ru(bpz)3[PF6]2 | KOH | 12 | 80 |
11 | H2O | — | KOH | 12 | 11 |
12 | H2O | I2 | K3PO4 | 12 | 70 |
13 | H2O | I2 | K2CO3 | 12 | 73 |
14 | H2O | I2 | Cs2CO3 | 12 | 78 |
15 | H2 O | I2 | NaOH | 12 | 92 |
16 | H2O | I2 | — | 12 | trace |
17 | H2O | I2 | NaOH | 11 | 84 |
18 | H2O | I2 | NaOH | 13 | 92 |
19e | H2O | I2 | NaOH | 12 | 88 |
[1] |
(a) Kamble A.A.; Kamble R.R.; Chougala L.S.; Kadadevarmath J.S.; Maidur S.R.; Patil P.S.; Kumbar M.N.; Marganakop S.B. ChemistrySelect 2017, 2, 6882.
doi: 10.1002/slct.201700498 |
(b) Kamal A.; Bharathi E.V.; Reddy J.S.; Ramaiah M.J.; Dastagiri D.; Reddy M.K.; Viswanath A.; Reddy T.L.; Shaik T.B.; Pushpavalli S. N. C. V. L.; Bhadra M.P. Eur. J. Med. Chem. 2011, 46, 691.
doi: 10.1016/j.ejmech.2010.12.004 |
|
(c) Chinigo G.M.; Paige M.; Grindrod S.; Hamel E.; Dakshanamurthy S.; Chruszcz M.; Minor W.; Brown M.L. J. Med. Chem. 2008, 51, 4620.
doi: 10.1021/jm800271c |
|
(d) Keopefly J.B.; Mead J.F.; Brokman J.A. J. Am. Chem. Soc. 1947, 69, 1837.
doi: 10.1021/ja01199a513 |
|
(e) Keopefly J.B.; Mead J.F.; Brokman J.A. J. Am. Chem. Soc. 1947, 69, 1048.
doi: 10.1021/ja01197a022 |
|
[2] |
(a) Roopan S.M.; Khan F.N.; Jin J.S.; Kumar R.S. Res. Chem. Intermed. 2011, 37, 919.
doi: 10.1007/s11164-011-0301-3 pmid: 11087572 |
(b) Hour M.J.; Huang L.J.; Kuo S.C.; Xia Y.; Bastow K.; Nakanishi Y.; Hamel E.; Lee K.H. J. Med. Chem. 2000, 43, 4479.
pmid: 11087572 |
|
(c) Wang Z.W.; Wang M.X.; Yao X.; Li Y.; Tan J.; Wang L.Z.; Qiao W.T.; Geng Y.Q.;, Liu Y.X.; Wang Q.M. Eur. J. Med. Chem. 2012, 53, 275.
doi: 10.1016/j.ejmech.2012.04.010 pmid: 11087572 |
|
(d) Horton D.A.; Bourne G.T.; Smythe M.L. Chem. Rev. 2003, 103, 893.
doi: 10.1021/cr020033s pmid: 11087572 |
|
[3] |
(a) Huang W.; Liu J.; Wang C. Chin. J. Org. Chem. 2009, 29, 1533. (in Chinese)
pmid: 14599178 |
黄伟平, 刘建利, 王翠玲, 有机化学, 2009, 29, 1533.).
pmid: 14599178 |
|
(b) Cagir A.; Jones S.H.; Gao R.; Eisenhauer B.M. J. Am. Chem. Soc. 2003, 125, 13628.
pmid: 14599178 |
|
[4] |
(a) Geng H.; Huang P.-Q. Chem. Rec. 2019, 19, 523.
doi: 10.1002/tcr.201800079 pmid: WOS:000458826400014 |
(b) Wu J.-F.; Huang P.-Q. Chin. Chem. Lett. 2020, 31, 61.
doi: 10.1016/j.cclet.2019.06.043 pmid: WOS:000458826400014 |
|
[5] |
(a) Vemula S.R.; Kumar D.; Cook G.R. ACS Catal. 2016, 6, 5295.
doi: 10.1021/acscatal.6b01818 |
(b) Hrast M.; Rožman K.; Jukič M.; Patin D.; Gobec S.; Sova M. Bioorg. Med. Chem. Lett. 2017, 27, 3529.
doi: 10.1016/j.bmcl.2017.05.064 |
|
(c) Hase D.V.; Jayaram R.V.; Thirumalai K.; Swaminathan M. ChemistrySelect 2019, 4, 3440.
doi: 10.1002/slct.v4.12 |
|
(d) Dabiri M.; Lehi N.F.; Movahed S.K.; Khavasi H.R. Eur. J. Org. Chem. 2019, 2933.
|
|
(e) Kumar D.; Vemula S.R.; Cook R. Green Chem. 2015, 17, 4300.
doi: 10.1039/C5GC01028D |
|
[6] |
(a) Parashuram L.; Sreenivasa S.; Akshatha S.; Kumar V.U.; Kumar S. Asian J. Org. Chem. 2017, 6, 1755.
doi: 10.1002/ajoc.201700467 |
(b) Laha J.K.; Patel K.V.; Tummalapalli K. S. S; Dayal N. Chem. Commun. 2016, 52, 10245.
doi: 10.1039/C6CC04259G |
|
(c) Pariyar G.C.; Mitra B.; Mukherjee S.; Ghosh P. ChemistrySelect 2020, 5, 104.
doi: 10.1002/slct.v5.1 |
|
(d) Kang H.; Wang W.; Sun Q.; Yang S.; Jin J.; Zhang X.; Ren X.; Zhang J.; Zhou J. Heterocycl. Commun. 2018, 24, 293.
doi: 10.1515/hc-2018-0115 |
|
(e) Rohokale R.S.; Kalshetti R.G.; Ramana C.V. J. Org. Chem. 2019, 84, 2951.
doi: 10.1021/acs.joc.8b02738 |
|
[7] |
(a) Majumdar B.; Sarma D.; Jain S.; Sarma T.K. ACS Omega 2018, 3, 13711.
doi: 10.1021/acsomega.8b01794 pmid: 31458072 |
(b) Tang L.; Zhao X.; Zou G.; Zhou Y.; Yang X. Asian J. Org. Chem. 2016, 5, 335.
doi: 10.1002/ajoc.v5.3 pmid: 31458072 |
|
(c) Hakim Siddiki, S. M. A.; Kon, K.; Touchy, A.S.; Shimizu, K.-I. Catal. Sci. Technol. 2014, 4, 1716.
doi: 10.1039/C4CY00092G pmid: 31458072 |
|
(d) Parua S.; Das S.; Sikari R.; Sinha S.; Paul N.D. J. Org. Chem. 2017, 82, 7165.
doi: 10.1021/acs.joc.7b00643 pmid: 31458072 |
|
[8] |
(a) Alam M.T.; Maiti S.; Mal P. Beilstein J. Org. Chem. 2018, 14, 2396.
doi: 10.3762/bjoc.14.216 pmid: 20800934 |
(b) Palem J.D.; Alugubelli G.R.; Bantu R.; Nagarapu L.; Polepalli S.; Jain S.N.; Bathini R.; Manga V. Bioorg. Med. Chem. Lett. 2016, 26, 3014.
doi: 10.1016/j.bmcl.2016.05.021 pmid: 20800934 |
|
(c) Shang Y.-H.; Fan L.-Y.; Li X.-X.; Liu M.-X. Chin. Chem. Lett. 2015, 26, 1355.
doi: 10.1016/j.cclet.2015.07.026 pmid: 20800934 |
|
(d) Hu B.-Q.; Wang L.-X.; Yang L.; Xiang J.-F.; Tang Y.-L. Eur. J. Org. Chem. 2015, 4504.
pmid: 20800934 |
|
(e) Hisano T.; Ichikawa M.; Nakagawa A.; Tsuji M. Chem. Pharm. Bull. 1975, 23, 1910.
pmid: 20800934 |
|
(f) Balakumar C.; Lamba P.; Pran Kishore D.; Lakshmi Narayana B.; Venkat Rao K.; Rajwinder K.; Raghuram Rao A.; Shireesha B.; Narsaiah B. Eur. J. Med. Chem. 2010, 45, 4904.
doi: 10.1016/j.ejmech.2010.07.063 pmid: 20800934 |
|
(g) Sharif M.; Opalach J.; Langer P.; Beller M.; Wu X. RSC Adv. 2014, 4, 8.
doi: 10.1039/C3RA45765F pmid: 20800934 |
|
(h) Zhang Z.; Wang M.; Zhang C.; Zhang Z.; Lu J.; Wang F. Chem. Commun. 2015, 51, 9205.
doi: 10.1039/C5CC02785C pmid: 20800934 |
|
(i) Jia F.-C.; Zhou Z.-W.; Xu C.; Wu Y.-D.; Wu A.-X. Org. Lett. 2016, 18, 2942.
doi: 10.1021/acs.orglett.6b01291 pmid: 20800934 |
|
(j) Abdel-Jalil R.J.; Voelter W.; Saeed M. Tetrahedron Lett. 2004, 45, 3475.
doi: 10.1016/j.tetlet.2004.03.003 pmid: 20800934 |
|
[9] |
Seuli P.; Siuli D.; Rina S.; Suman S.; Nanda D.P. J. Org. Chem. 2017, 82, 7165.
doi: 10.1021/acs.joc.7b00643 |
[10] |
Siuli D.; Suman S.; Deepannita S.; Rakesh M.; Gargi C.; Paula B.; Nanda D.P. J. Org. Chem. 2019, 84, 10160.
doi: 10.1021/acs.joc.9b01343 pmid: WOS:000481979200029 |
[11] |
(a) Kalay E.; Kucukkececi H.; Kilic H.; Metin O. Chem. Commun. 2020, 56, 5901.
doi: 10.1039/D0CC01874K pmid: 7e6bfddf-1889-416e-935f-5d7f3f9698eb |
(b) Kim J.; Kang B.; Hong S.H. ACS Catal. 2020, 10, 6013.
doi: 10.1021/acscatal.0c01232 pmid: 7e6bfddf-1889-416e-935f-5d7f3f9698eb |
|
(c) Ratushnyy M.; Kvasovs N.; Sarkar S.; Gevorgyan V. Angew. Chem., Int. Ed. 2020, 59, 10316.
doi: 10.1002/anie.v59.26 pmid: 7e6bfddf-1889-416e-935f-5d7f3f9698eb |
|
(d) He W.-B.; Gao L.-Q.; Chen X.-J.; Wu Z.-L.; Huang Y.; Cao Z.; Xu X.-H.; He W.-M. Chin. Chem. Lett. 2020, 31, 1895.
doi: 10.1016/j.cclet.2020.02.011 pmid: 7e6bfddf-1889-416e-935f-5d7f3f9698eb |
|
(e) Xie L.-Y.; Bai Y.-S.; Xu X.-Q.; Peng X.; Tang H.-S.; Huang Y.; Lin Y. - W.; Cao Z.; He W.-M. Green Chem. 2020, 22, 1720.
doi: 10.1039/C9GC03899J pmid: 7e6bfddf-1889-416e-935f-5d7f3f9698eb |
|
(f) Xie L.-Y.; Liu Y.-S.; Ding H.-R.; Gong S.-F.; Tan J.-X.; He J. - Y.; Cao Z.; He W. - M.Chin. J. Catal. 2020, 41, 1168.
doi: 10.1016/S1872-2067(19)63526-6 pmid: 7e6bfddf-1889-416e-935f-5d7f3f9698eb |
|
(g) Peng S.; Lin Y.; He W. Chin. J. Org. Chem. 2020, 40, 541. (in Chinese)
doi: 10.6023/cjoc202000006 pmid: 7e6bfddf-1889-416e-935f-5d7f3f9698eb |
|
彭莎, 林英武, 何卫民, 有机化学, 2020, 40, 541.).
doi: 10.6023/cjoc202000006 pmid: 7e6bfddf-1889-416e-935f-5d7f3f9698eb |
|
[12] |
Zhang M.-L.; Ruzi R.; Li N.; Xie J.; Zhu C. Org. Chem. Front. 2018, 5, 749.
doi: 10.1039/C7QO00795G |
[13] |
(a) Yang J.; Fu T.; Long Y.; Zhou X.G. Chin. J. Org. Chem. 2017, 37, 1111. (in Chinese)
pmid: WOS:000498419800001 |
杨军, 付婷, 龙洋, 周向葛, 有机化学, 2017, 37, 1111.).
doi: 10.6023/cjoc201702045 pmid: WOS:000498419800001 |
|
(b) Li W.; Yin G.; Huang L.; Xiao Y.; Fu Z.; Xin X.; Liu F.; Li Z.; He W. Green Chem. 2016, 18, 4879.
doi: 10.1039/C6GC01196A pmid: WOS:000498419800001 |
|
(c) Luo F.H.; Long Y.; Li Z.K.; Zhou X.G. Acta Chim. Sinica 2016, 74, 805. (in Chinese)
doi: 10.6023/A16060316 pmid: WOS:000498419800001 |
|
罗飞华, 龙洋, 李正凯, 周向葛, 化学学报, 2016, 74, 805.).
doi: 10.6023/A16060316 pmid: WOS:000498419800001 |
|
(d) Peng S.; Hu D.; Hu J.-L.; Lin Y.-W.; Tang S.-S.; Tang H.-S.; He J.-Y.; Cao Z.; He W.-M. Adv. Synth. Catal. 2019, 361, 5721.
doi: 10.1002/adsc.201901163 pmid: WOS:000498419800001 |
|
(e) Zhang R.; Wang G.; Li H.; Duan G.; Wang K.; Xia C. Chin. J. Org. Chem. 2019, 39, 1429. (in Chinese)
doi: 10.6023/cjoc201810011 pmid: WOS:000498419800001 |
|
张瑞泽, 王国栋, 李洪爽, 段桂运, 王凯, 夏成才, 化学学报, 2019, 39, 1429.).
pmid: WOS:000498419800001 |
|
(f) Yue H.; Bao P.; Wang L.; Lv X.; Yang D. Chin. J. Org. Chem. 2019, 39, 463. (in Chinese)
pmid: WOS:000498419800001 |
|
岳会兰, 鲍鹏丽, 王雷雷, 吕晓霞, 杨道山, 化学学报, 2019, 39, 463.).
pmid: WOS:000498419800001 |
|
(g) Peng S.; Song Y.-X.; He J.-Y.; Tang S.-S.; Tan J.-X.; Cao Z.; Lin Y.-W.; He W.-M. Chin. Chem. Lett. 2019, 30, 2287.
doi: 10.1016/j.cclet.2019.08.002 pmid: WOS:000498419800001 |
|
[14] |
Zhong J.-J.; Meng Q.Y.; Liu B.; Li X.-B.; Gao X.-W.; Lei T.; Wu C.-J.; Li Z.-J.; Tung C.-H.; Wu L.-Z. Org. Lett. 2014, 16, 1988.
doi: 10.1021/ol500534w |
[15] |
Ge W.; Zhu X.; Wei Y. RSC Adv. 2013, 3, 10817.
doi: 10.1039/c3ra40872h |
[16] |
(a) Ke F.; Zhang P.; Xu Y.; Lin X.; Lin J.; Lin C.; Xu J. Synlett 2018, 29, 2722.
doi: 10.1055/s-0037-1610843 |
(b) Ke F.; Liu C.; Zhang P.; Xu J.; Chen X. Synth. Commun. 2018, 48, 3089.
doi: 10.1080/00397911.2018.1533974 |
|
(c) Ke F.; Xu Y.; Zhu S.; Lin X.; Lin C.; Zhou S.; Su H. Green Chem. 2019, 21, 4329.
doi: 10.1039/C9GC01391A |
|
[17] |
(a) Hu Y.; Chen L.; Li B. RSC Adv. 2016, 6, 65196.
doi: 10.1039/C6RA12164K pmid: 30791215 |
(b) Cao L.; Huo H.; Zeng H.; Yu Y.; Lu D.; Gong Y. Adv. Synth. Catal. 2018, 360, 4764.
doi: 10.1002/adsc.201800927 pmid: 30791215 |
|
(c) Nagasawa Y.; Matsusaki Y.; Nobuta T.; Tada N.; Miura T.; Itoh A. RSC Adv. 2015, 5, 63952.
doi: 10.1039/C5RA07275A pmid: 30791215 |
|
(d) Wang Q.; Lv M.; Liu J.; Li Y.; Cao H.; Zhang X.; Xu Q. ChemSusChem 2019, 12, 3043.
doi: 10.1002/cssc.201900265 pmid: 30791215 |
|
(e) Liu Y.L.; Wang B.; Qiao X.F.; Tung C.-H.; Wang Y.F. ACS Catal. 2017, 7, 4093.
doi: 10.1021/acscatal.7b00799 pmid: 30791215 |
|
(f) Eva S.; Lisa-N. U.;, Phung, P. H. Q.; Gwen, S.; Frank, H.; Alexander, V.; Malte, B.Chem.- Eur. J. 2020, 26, 269.
doi: 10.1002/chem.v26.1 pmid: 30791215 |
|
(g) Yang J.Y.; Xie D.T.; Zhou H.Y.; Chen S.W.; Huo C.D.; Li Z. Org. Chem. Front. 2018, 5, 1325.
doi: 10.1039/C8QO00056E pmid: 30791215 |
|
(h) Shang Y.-H.; Fan L.-Y.; Li X.-X.; Liu M.-X., Chin. Chem. Lett. 2015, 26, 1355.
doi: 10.1016/j.cclet.2015.07.026 pmid: 30791215 |
|
[18] |
(a) Doukas J.; Eide L.; Stebbins K.; Racanelli-Layton A.; Dellamary L.; Martin M.; Dneprovskaia E.; Noronha G.; Soll R.; Wrasidlo W.; Acevedo L.M.; Cheresh D.A. J. Pharmacol. Exp. Ther. 2009, 328, 758.
doi: 10.1124/jpet.108.144311 |
(b) Duan C.; Jia J.; Zhu R.; Wamg J. J. Heterocycl. Chem. 2012, 49, 865.
doi: 10.1002/jhet.883 |
|
(c) Yang X.; Guan A. J. Fluorine Chem. 2014, 161, 1.
doi: 10.1016/j.jfluchem.2014.02.001 |
|
[19] |
(a) Yu X.; Gao L.; Jia L.; Yamamoto Y.; Bao M. J. Org. Chem. 2018, 83, 10352.
doi: 10.1021/acs.joc.8b01460 pmid: WOS:000467319600018 |
(b) Abdullaha M.; Mohammed S.; Ali M.; Kumar A.; Vishwakarma R.A.; Bharate S.B. J. Org. Chem. 2019, 84, 5129.
doi: 10.1021/acs.joc.9b00138 pmid: WOS:000467319600018 |
|
(c) Upadhyaya K.; Thakur R.K.; Shukla S.K.; Tripathi R.P. J. Org. Chem. 2016, 81, 5046.
doi: 10.1021/acs.joc.6b00599 pmid: WOS:000467319600018 |
|
(d) Senadi G.C.; Kudale V.S.; Wang J.-J. Green Chem. 2019, 21, 979.
doi: 10.1039/C8GC03839B pmid: WOS:000467319600018 |
|
(e) Li F.; Lu L.; Liu P. Org. Lett. 2016, 18, 2580.
doi: 10.1021/acs.orglett.6b00925 pmid: WOS:000467319600018 |
|
(f) Zheng Y.; Gao C.; Huang R.; Liu Y.; Xue Y.; An L. Asian J. Chem. 2016, 28, 95.
doi: 10.14233/ajchem pmid: WOS:000467319600018 |
|
(g) Feng Y.; Li Y.; Cheng G.; Wang L.; Cui X. J. Org. Chem. 2015, 80, 7099.
doi: 10.1021/acs.joc.5b00957 pmid: WOS:000467319600018 |
[1] | 陈雯雯, 张琴, 张松月, 黄芳芳, 张馨尹, 贾建峰. 无光催化剂条件下可见光诱导炔基碘和亚磺酸钠偶联反应[J]. 有机化学, 2024, 44(2): 584-592. |
[2] | 李路瑶, 贺忠文, 张振国, 贾振华, 罗德平. 三芳基碳正离子在有机合成中的应用[J]. 有机化学, 2024, 44(2): 421-437. |
[3] | 朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17. |
[4] | 赵茜帆, 陈永正, 张世明. 碳基非金属催化剂在有机合成领域的应用及机理研究[J]. 有机化学, 2024, 44(1): 137-147. |
[5] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[6] | 董江湖, 宣良明, 王池, 赵晨熙, 王海峰, 严琼姣, 汪伟, 陈芬儿. 无过渡金属或无光催化剂条件下可见光促进喹喔啉酮C(3)—H官能团化研究进展[J]. 有机化学, 2024, 44(1): 111-136. |
[7] | 周然, 袁春梅, 张桃, 毛飘, 刘燚, 孟开妮, 幸惠, 薛伟. 含喹唑啉酮的查尔酮衍生物的设计、合成及生物活性研究[J]. 有机化学, 2023, 43(9): 3196-3209. |
[8] | 徐伟, 翟宏斌, 程斌, 汪太民. 可见光诱导的钯催化Heck反应[J]. 有机化学, 2023, 43(9): 3035-3054. |
[9] | 樊思捷, 董武恒, 梁彩云, 王贵超, 袁瑶, 尹作栋, 张兆国. 可见光诱导的自由基环化反应构建4-芳基-1,2-二氢萘类化合物[J]. 有机化学, 2023, 43(9): 3277-3286. |
[10] | 杨晓娜, 郭宏宇, 周荣. 可见光促进有机硅化合物参与的化学转化[J]. 有机化学, 2023, 43(8): 2720-2742. |
[11] | 张晓雨, 李欣燕, 崔冰, 邵志晖, 赵铭钦. 四氢-β-咔啉衍生物的设计、合成及抗氧化性能研究[J]. 有机化学, 2023, 43(8): 2885-2894. |
[12] | 吴敏, 刘博, 袁佳龙, 付强, 汪锐, 娄大伟, 梁福顺. 可见光媒介的C—S键构建反应研究进展[J]. 有机化学, 2023, 43(7): 2269-2292. |
[13] | 高艳华, 张银潘, 张妍, 宋涛, 杨勇. 可见光驱动表面富含氧空位Nb2O5催化醇氧化反应[J]. 有机化学, 2023, 43(7): 2572-2579. |
[14] | 卢凯, 屈浩琦, 陈樨, 秋慧, 郑晶, 马猛涛. 无催化剂、无溶剂条件下炔烃和烯烃与儿茶酚硼烷的硼氢化反应[J]. 有机化学, 2023, 43(6): 2197-2205. |
[15] | 南江, 黄冠杰, 胡岩, 王波. 钌催化喹唑啉酮与碳酸亚乙烯酯的C—H [4+2]环化反应[J]. 有机化学, 2023, 43(4): 1537-1549. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||