有机化学 ›› 2022, Vol. 42 ›› Issue (5): 1387-1395.DOI: 10.6023/cjoc202203053 上一篇 下一篇
所属专题: 有机氟化学虚拟合辑
研究论文
刘冰a,*(), 王智传a, 孙凯b, 唐石c, 王薪b,*()
收稿日期:
2022-03-27
修回日期:
2022-04-03
发布日期:
2022-04-14
通讯作者:
刘冰, 王薪
基金资助:
Bing Liua(), Zhichuang Wanga, Kai Sunb, Shi Tangc, Xin Wangb()
Received:
2022-03-27
Revised:
2022-04-03
Published:
2022-04-14
Contact:
Bing Liu, Xin Wang
Supported by:
文章分享
开发了一种实用的银催化三氟甲硫化环化反应, 合成了各种结构多样的含CF3S的苯并咪唑[2,1-a]异喹啉, 产率中等至良好. 机理研究表明, 催化反应通过CF3S自由基引发的串联环化途径进行.
刘冰, 王智传, 孙凯, 唐石, 王薪. 银介导的自由基三氟甲硫化环化: 含CF3S苯并咪唑[2,1-a]异喹啉的合成[J]. 有机化学, 2022, 42(5): 1387-1395.
Bing Liu, Zhichuang Wang, Kai Sun, Shi Tang, Xin Wang. Silver-Mediated Radical Trifluoromethylthiolation Cyclization: Synthesis of CF3S-Containing Benzimidazole[2,1-a]isoquinolines[J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1387-1395.
Entry | Oxidant/equiv. | Additive/equiv. | V(solvent)/ mL | Yield/% |
---|---|---|---|---|
1 | K2S2O8 (2.0) | None | DMSO | 52 |
2 | K2S2O8 (2.0) | None | MeCN | 17 |
3 | K2S2O8 (2.0) | None | DCE | 0 |
4 | K2S2O8 (2.0) | None | THF | 21 |
5 | K2S2O8 (1.0) | None | DMSO | 50 |
6 | PIDA (1.0) | None | DMSO | 38 |
7 | Selectfluor (1.0) | None | DMSO | 0 |
8 | TBHP (1.0) | None | DMSO | Trace |
9 | (NH4)2S2O8 (1.0) | None | DMSO | 51 |
10 | K2S2O8 (1.0) | KH2PO4 (1.5) | DMSO | 62 |
11 | K2S2O8 (1.0) | HMPA (1.5) | DMSO | Trace |
12 | K2S2O8 (1.0) | Li2CO3 (1.5) | DMSO | 35 |
13 | K2S2O8 (1.0) | NaHCO3 (1.5) | DMSO | 48 |
14 | K2S2O8 (1.0) | KHCO3 (1.5) | DMSO | 47 |
15 | K2S2O8 (1.0) | Na2CO3 (1.5) | DMSO | 50 |
16 | K2S2O8 (1.0) | DBU (1.5) | DMSO | 53 |
17 | K2S2O8 (1.0) | KH2PO4·3H2O (1.5) | DMSO | 65 |
18 | K2S2O8 (1.0) | KH2PO4·3H2O (1.0) | DMSO | 83 |
19 | K2S2O8 (1.0) | KH2PO4·3H2O (0.5) | DMSO | 64 |
20 | K2S2O8 (1.0) | KH2PO4·3H2O (1.0) | DMSO | 56c |
21 | K2S2O8 (1.0) | KH2PO4·3H2O (1.0) | DMSO | 70d |
Entry | Oxidant/equiv. | Additive/equiv. | V(solvent)/ mL | Yield/% |
---|---|---|---|---|
1 | K2S2O8 (2.0) | None | DMSO | 52 |
2 | K2S2O8 (2.0) | None | MeCN | 17 |
3 | K2S2O8 (2.0) | None | DCE | 0 |
4 | K2S2O8 (2.0) | None | THF | 21 |
5 | K2S2O8 (1.0) | None | DMSO | 50 |
6 | PIDA (1.0) | None | DMSO | 38 |
7 | Selectfluor (1.0) | None | DMSO | 0 |
8 | TBHP (1.0) | None | DMSO | Trace |
9 | (NH4)2S2O8 (1.0) | None | DMSO | 51 |
10 | K2S2O8 (1.0) | KH2PO4 (1.5) | DMSO | 62 |
11 | K2S2O8 (1.0) | HMPA (1.5) | DMSO | Trace |
12 | K2S2O8 (1.0) | Li2CO3 (1.5) | DMSO | 35 |
13 | K2S2O8 (1.0) | NaHCO3 (1.5) | DMSO | 48 |
14 | K2S2O8 (1.0) | KHCO3 (1.5) | DMSO | 47 |
15 | K2S2O8 (1.0) | Na2CO3 (1.5) | DMSO | 50 |
16 | K2S2O8 (1.0) | DBU (1.5) | DMSO | 53 |
17 | K2S2O8 (1.0) | KH2PO4·3H2O (1.5) | DMSO | 65 |
18 | K2S2O8 (1.0) | KH2PO4·3H2O (1.0) | DMSO | 83 |
19 | K2S2O8 (1.0) | KH2PO4·3H2O (0.5) | DMSO | 64 |
20 | K2S2O8 (1.0) | KH2PO4·3H2O (1.0) | DMSO | 56c |
21 | K2S2O8 (1.0) | KH2PO4·3H2O (1.0) | DMSO | 70d |
[1] |
(b) Candeias, N. R.; Branco, L. C.; Gois, P. M. P.; Afonso, C. A. M.; Trindade, A. F. Chem. Rev. 2009, 109, 2703.
doi: 10.1021/cr800462w pmid: 28051855 |
(c) Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040.
doi: 10.1021/acs.accounts.5b00020 pmid: 28051855 |
|
(d) Jiao, J.; Kei, M.; Kenichiro, I. ACS Catal. 2016, 6, 610.
doi: 10.1021/acscatal.5b02417 pmid: 28051855 |
|
(e) Subramanian, P.; Rudolf, G. C.; Kaliappan, K. P. Chem. Asian J. 2016, 11, 168.
doi: 10.1002/asia.201500361 pmid: 28051855 |
|
(f) Yoonsu, P.; Youyoung, K.; Sukbok, C. Chem. Rev. 2017, 117, 9247.
doi: 10.1021/acs.chemrev.6b00644 pmid: 28051855 |
|
[2] |
McGrath, N. A.; Brichacek, M.; Njardarson, J. T. J. Chem. Educ. 2010, 87, 1348.
doi: 10.1021/ed1003806 |
[3] |
(a) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395.
doi: 10.1021/cr050041j |
(b) Lygin, A. V.; Meijere, A. D. Angew. Chem., Int. Ed. 2010, 49, 9094.
doi: 10.1002/anie.201000723 |
|
(c) Guo, X.-X.; Gu, D.-W.; Wu, Z.-X.; Zhang, W.-B. Chem. Rev. 2015, 115, 1622.
doi: 10.1021/cr500410y |
|
(d) Alam, K.; Hong, S. W.; Oh, K. H.; Park, J. K. Angew. Chem.,Int. Ed. 2017, 56, 13387.
doi: 10.1002/anie.201705514 |
|
(e) Sun, K.; Si, Y.-F.; Chen, X.-L.; Lv, Q.-Y.; Peng, Y.-Y.; Qu, L.-B.; Yu, B. Asian J. Org. Chem. 2019, 8, 2042.
doi: 10.1002/ajoc.201900570 |
|
(f) Deady, L. W.; Rodemann, T. Aust. J. Chem. 2001, 54, 529.
doi: 10.1071/CH01114 |
|
[4] |
(a) Meng, G.; Niu, H.-Y.; Qu, G.-R.; Fossey, J. S.; Li, J.-P.; Guo, H.-M. Chem. Commun. 2012, 48, 9601.
doi: 10.1039/c2cc34158a |
(b) Iaroshenko, V. O.; Ostrovskyi, D.; Miliutina, M.; Maalik, A.; Villinger, A.; Tolmachev, A.; Volochnyuk, D. M.; Langer, P. Adv. Synth. Catal. 2012, 354, 2495.
doi: 10.1002/adsc.201200221 |
|
(c) Sun, X.; Hu, X.; Nie, S.-Z.; Yan, Y.-Y.; Zhang, X.-J.; Yan, M. Adv. Synth. Catal. 2013, 355, 2179.
doi: 10.1002/adsc.201300455 |
|
(d) Sun, X.; Lv, X.-H.; Ye, L.-M.; Hu, Y.; Chen, Y.-Y.; Zhang, X.-J.; Yan, M. Org. Biomol. Chem. 2015, 13, 7381.
doi: 10.1039/C5OB00904A |
|
(e) Liu, Y.-G.; Chen, G.-Q.; Tse, C.-W.; Guan, X.-G.; Xu, Z.-J.; Huang, J.-S.; Che, C.-M. Chem. Asian J. 2015, 10, 100.
doi: 10.1002/asia.201402580 |
|
[1] |
(a) Ricci, A. Amino Group Chemistry: From Synthesis to The Life Sciences,Wiley-VCH, Weinheim, 2008.
pmid: 28051855 |
[4] |
(f) Nguyen, T. B.; Ermolenkoa, L. Chem. Commun. 2016, 52, 4914
doi: 10.1039/C6CC01436D |
[5] |
(a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
doi: 10.1126/science.1131943 |
(b) Hird, M. Chem. Soc. Rev. 2007, 36, 2070.
doi: 10.1039/b610738a |
|
(c) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, S. V. Chem. Soc. Rev. 2008, 37, 320.
doi: 10.1039/B610213C |
|
(d) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
doi: 10.1021/cr4002879 |
|
(e) Wang, S.-W.; Yu, J.; Zhou, Q.-Y.; Chen, S.-Y.; Xu, Z.-H.; Tang, S. ACS Sustainable Chem. Eng. 2019, 7, 10154.
doi: 10.1021/acssuschemeng.9b02178 |
|
[6] |
(a) Leo, A.; Hansch, C.; Elkins, D. Chem. Rev. 1971, 71, 525.
doi: 10.1021/cr60274a001 |
(b) Yagupol’skii, L. M.; Il’chenko, A. Y.; Kondratenko, N. V. Russ. Chem. Rev. 1974, 43, 1.
doi: 10.1070/RC1974v043n01ABEH001785 |
|
(c) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.
doi: 10.1021/cr00002a004 |
|
(d) Leroux, F. Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827.
doi: 10.1021/cr040075b |
|
(e) Manteau, B.; Pazenok, S.; Vors, J. P.; Leroux, F. R. J. Fluorine Chem. 2010, 131, 140.
doi: 10.1016/j.jfluchem.2009.09.009 |
|
(f) Zhang, K.; Xu, X.-H.; Qing, F.-L. Chin. J. Org. Chem. 2015, 35, 556. (in Chinese)
doi: 10.6023/cjoc201501017 |
|
(张柯, 徐修华, 卿凤翎, 有机化学, 2015, 35, 556.)
doi: 10.6023/cjoc201501017 |
|
(g) Lang, B.; Suleman, M.; Lu, P.; Wang, Y.-G. Chin. J. Org. Chem. 2020, 40, 3300. (in Chinese)
doi: 10.6023/cjoc202005011 |
|
(郎勃, Muhammad, Suleman, 吕萍, 王彦广, 有机化学, 2020, 40, 3300.)
doi: 10.6023/cjoc202005011 |
|
[7] |
(a) Parsons, P. J.; Penkett, C. S.; Shell, A. J. Chem. Rev. 1996, 96, 195.
pmid: 23121090 |
(b) Wille, U. Chem. Rev. 2013, 113, 813.
doi: 10.1021/cr100359d pmid: 23121090 |
|
(c) Chen, N.; Lei, J.; Wang, Z.-C.; Liu, Y.-J.; Sun, K.; Tang, S. Chin. J. Org. Chem. 2022, 42, 1061. (in Chinese)
doi: 10.6023/cjoc202109033 pmid: 23121090 |
|
(陈宁, 雷佳, 王智传, 刘颖杰, 孙凯, 唐石, 有机化学, 2022, 42, 1061.)
doi: 10.6023/cjoc202109033 pmid: 23121090 |
|
(d) Wang, X.; Zhang, Y.; Sun, K.; Meng, J.-P.; Zhang, B. Chin. J. Org. Chem. 2021, 41, 4588. (in Chinese)
doi: 10.6023/cjoc202109046 pmid: 23121090 |
|
(王薪, 张艳, 孙凯, 孟建萍, 张冰, 有机化学, 2021, 41, 4588.)
doi: 10.6023/cjoc202109046 pmid: 23121090 |
|
[8] |
Yin, F.; Wang, X.-S. Org. Lett. 2014, 16, 1128.
doi: 10.1021/ol403739w |
[9] |
Zeng, F.-L.; Sun, K.; Chen, X.-L.; Yuan, X.-Y.; He, S.-Q.; Liu, Y.; Peng, Y.-Y.; Qu, L.-B.; Lv, Q.-Y.; Yu, B. Adv. Synth. Catal. 2019, 361, 5176.
doi: 10.1002/adsc.201901016 |
[10] |
Lin, S.-N.; Cui, J.-C.; Chen, Y.; Li, Y. J. Org. Chem. 2021, 86, 15768.
doi: 10.1021/acs.joc.1c01832 |
[11] |
(a) Sun, K.; Li, Y.-L.; Feng, R.-R.; Mu, S.-Q.; Wan, X.; Zhang, B. J. Org. Chem. 2020, 85, 1001.
doi: 10.1021/acs.joc.9b02941 |
(b) Sun, K.; Wang, X.; Li, C.; Wang, H.; Li, L. Org. Chem. Front. 2020, 7, 3100.
doi: 10.1039/D0QO00849D |
|
(c) Sun, K.; Lei, J.; Liu, Y.; Liu, B.; Chen, N. Adv. Synth. Catal. 2020, 362, 3709.
doi: 10.1002/adsc.202000876 |
|
(d) Sun, K.; Li, G.-F.; Li, Y.-Y.; Yu, J.; Zhao, Q.; Zhang, Z.-G.; Zhang, G.-S. Adv. Synth. Catal. 2020, 362, 1947.
doi: 10.1002/adsc.202000040 |
|
(e) Wang, X.; Guo, S.; Zhang, Y.; Zhang, Z.; Zhang, G.; Ye, Y.; Sun, K. Adv. Synth. Catal. 2021, 363, 3290.
doi: 10.1002/adsc.202100208 |
|
(f) Lv, Y.-H.; Meng, J.-P.; Li, C.; Wang, X.; Ye, Y.; Sun, K. Adv. Synth. Catal. 2021, 363, 5235.
doi: 10.1002/adsc.202101184 |
|
(g) Zhao, F.; Guo, S.; Zhang, Y.; Sun, T.; Yang, B.; Ye, Y.; Sun, K. Org. Chem. Front. 2021, 8, 6859.
|
|
(h) Zhang, Z.; Wang, S.-L.; Tan, P.-P.; Gu, X.-W.; Sun, W.-J.; Liu, C.; Chen, J.-C.; Li, J.-Z.; Sun, K. Org. Lett. 2022, 24, 2288.
doi: 10.1021/acs.orglett.2c00387 |
|
[12] |
(a) Hu, M.; Fan, J.-H.; Liu, Y.; Ouyang, X.-H.; Song, R.-J.; Li, J.-H. Angew. Chem., Int. Ed. 2015, 54, 9577.
doi: 10.1002/anie.201504603 |
(b) Hu, M.; Song, R.-J.; Li, J.-H. Angew. Chem.,Int. Ed. 2015, 54, 608.
|
|
(c) Guo, S.; Zhang, X.; Tang, P. Angew. Chem., nt. Ed. 2015, 54, 4065.
|
|
(d) Wu, H.; Xiao, Z.; Wu, J.; Guo, Y.; Xiao, J.-C.; Liu, C.; Chen, Q.-Y. Angew. Chem., nt. Ed. 2015, 54, 4070.
|
|
(e) Wang, C.; Song, R.-J.; Li, J.-H. Org. Lett. 2019, 21, 2800.
doi: 10.1021/acs.orglett.9b00771 |
|
(f) Guo, Y.-H.; Xiang, Y.-F.; Wei, L.; Wan, J.-P. Org. Lett. 2018, 20, 3971.
doi: 10.1021/acs.orglett.8b01536 |
|
(g) Wang, L.-L.; Zhang, Y.-L.; Zhang, M.; Bao, P.-L.; Lv, X.-X.; Liu, H.-G.; Zhao, X.-H.; Li, J.-S.; Luo, Z.-D.; Wei, W. Tetrahedron Lett. 2019, 60, 1845.
doi: 10.1016/j.tetlet.2019.06.017 |
|
(h) Li, G.-Q.; Gan, Z.-Y.; Kong, K.-X.; Dou, X.-M.; Yang, D.-S. Adv. Synth. Catal. 2019, 361, 1808.
doi: 10.1002/adsc.201900157 |
|
(i) Zhang, T.-S.; Zhang, H.-P.; Fu, R.; Wang, J.-Y.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Chem. Commun. 2019, 55, 13231.
doi: 10.1039/C9CC07236E |
|
(j) Ji, L.; Deng, Q.-F.; Liu, P.; Sun, P.-P. Org. Biomol. Chem. 2019, 17, 7715.
doi: 10.1039/C9OB01396B |
|
(k) Wan, J.-P.; Tu, Z.; Wang, Y.-Y. Chem.-Eur. J. 2019, 25, 6907.
doi: 10.1002/chem.201901025 |
|
(l) Tian, L.-H.; Guo, Y.-H.; Wei, L.; Wan, J.-P.; Sheng, S.-R. Asian J. Org. Chem. 2019, 8, 1484.
doi: 10.1002/ajoc.201900373 |
|
(m) Liu, Y.-Y.; Xiong, J.; Wei, L.; Wan, J.-P. Adv. Synth. Catal. 2020, 362, 877.
doi: 10.1002/adsc.201901234 |
|
(n) Yang, W.-C.; Zhang, M.-M.; Chen, W.; Yang, X.-H.; Feng, J.-G. Chin. J. Org. Chem. 2020, 40, 4060. (in Chinese)
doi: 10.6023/cjoc202005039 |
|
(杨文超, 张明明, 陈旺, 杨小虎, 冯建国, 有机化学, 2020, 40, 4060.)
doi: 10.6023/cjoc202005039 |
[1] | 夏登鹏, 罗锦昀, 何林, 蔡志华, 杜广芬. 氮杂环卡宾催化的五氟苯基硫醚的合成[J]. 有机化学, 2024, 44(2): 622-630. |
[2] | 杨爽, 房新强. 氮杂环卡宾催化实现的动力学拆分近期研究进展[J]. 有机化学, 2024, 44(2): 448-480. |
[3] | 刘杰, 韩峰, 李双艳, 陈天煜, 陈建辉, 徐清. 无过渡金属参与甲基杂环化合物与醇的选择性有氧烯基化反应[J]. 有机化学, 2024, 44(2): 573-583. |
[4] | 高宝昌, 石雨, 田媛, 张治国, 张婧如, 孙宇峰, 毛国梁, 戴凌燕. 4-甲基-2-氧代-6-芳氨基-二氢-吡喃-3-腈衍生物的合成[J]. 有机化学, 2024, 44(2): 644-649. |
[5] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[6] | 朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17. |
[7] | 金玉坤, 任保轶, 梁福顺. 可见光介导的三氟甲基的选择性C-F键断裂及其在偕二氟类化合物合成中的应用[J]. 有机化学, 2024, 44(1): 85-110. |
[8] | 贝文峰, 潘健, 冉冬梅, 刘伊琳, 杨震, 冯若昆. 基于钴催化吲哚酰胺与二炔和单炔的[4+2]环化反应合成γ-咔啉酮[J]. 有机化学, 2023, 43(9): 3226-3238. |
[9] | 徐伟, 翟宏斌, 程斌, 汪太民. 可见光诱导的钯催化Heck反应[J]. 有机化学, 2023, 43(9): 3035-3054. |
[10] | 张建涛, 张聪, 莫诺琳, 罗佳婷, 陈莲芬, 刘卫兵. 氯仿参与的烯烃自由基加成反应的研究进展[J]. 有机化学, 2023, 43(9): 3098-3106. |
[11] | 陈祖良, 魏颖静, 张俊良. 供体-受体氮杂环丙烷碳-碳键断裂的环加成反应研究进展[J]. 有机化学, 2023, 43(9): 3078-3088. |
[12] | 蔡远林, 吕亚, 聂桂花, 金智超, 池永贵. 氮杂环卡宾催化合成氰基化合物的研究进展[J]. 有机化学, 2023, 43(9): 3135-3145. |
[13] | 樊思捷, 董武恒, 梁彩云, 王贵超, 袁瑶, 尹作栋, 张兆国. 可见光诱导的自由基环化反应构建4-芳基-1,2-二氢萘类化合物[J]. 有机化学, 2023, 43(9): 3277-3286. |
[14] | 唐菁, 罗文坤, 周俊. 氮杂螺[4.5]三烯酮衍生物的合成研究进展[J]. 有机化学, 2023, 43(9): 3006-3034. |
[15] | 赵瑜, 张凯, 白育斌, 张琰图, 史时辉. 无金属条件下可见光催化与溴盐协同促进烯烃的氢硅化反应研究[J]. 有机化学, 2023, 43(8): 2837-2847. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||