有机化学 ›› 2022, Vol. 42 ›› Issue (12): 3923-3943.DOI: 10.6023/cjoc202208044 上一篇 下一篇
所属专题: 自由基化学专辑
综述与进展
收稿日期:
2022-08-31
修回日期:
2022-10-06
发布日期:
2022-10-24
通讯作者:
陈加荣
基金资助:
Pan-Pan Gao, Wen-Jing Xiao, Jia-Rong Chen()
Received:
2022-08-31
Revised:
2022-10-06
Published:
2022-10-24
Contact:
Jia-Rong Chen
Supported by:
文章分享
烯烃及其功能化衍生物是有机合成中最基本的合成砌块之一, 同时也普遍存在于许多天然产物和功能材料中. 传统的合成方法包括Wittig烯烃化、Peterson烯烃化、Horner-Wadsworth-Emmons反应等, 这些反应已经成为教科书中的经典反应, 为烯烃的高效合成提供了诸多选择. 这些方法大多基于离子型的反应路径, 并且有些方法需要在形成 C—C双键的位点对起始原料进行预官能化, 导致反应效率和选择性较低. 可见光光氧化还原催化因其符合绿色化学要求, 以及大多涉及自由基中间体的独特反应机理模式, 近年来已逐步成为化学家们发展新颖合成方法学的重要平台. 主要介绍近年来在光化学合成烯烃方面的进展, 并对该领域的发展方向进行了展望.
高盼盼, 肖文精, 陈加荣. 可见光促进的烯烃合成研究进展[J]. 有机化学, 2022, 42(12): 3923-3943.
Pan-Pan Gao, Wen-Jing Xiao, Jia-Rong Chen. Recent Progresses in Visible-Light-Driven Alkene Synthesis[J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 3923-3943.
[1] |
Domski, G. J.; Rose, J. M.; Coates, G. W.; Bolig, A. D.; Brookhart, M. Prog. Polym. Sci. 2007, 32, 30.
doi: 10.1016/j.progpolymsci.2006.11.001 |
[2] |
Álvarez, R.; Vaz, B.; Gronemeyer, H.; de Lera, A. R. Chem. Rev. 2014, 114, 1.
doi: 10.1021/cr400126u pmid: 24266866 |
[3] |
Hassam, M.; Taher, A.; Arnott, G. E.; Green, I. R.; van Otterlo, W. A. L. Chem. Rev. 2015, 115, 5462.
doi: 10.1021/acs.chemrev.5b00052 |
[4] |
(a) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863.
doi: 10.1021/cr00094a007 pmid: 20000700 |
(b) Chang, H.; Jayanth, T. T.; Wang, C.; Cheng, C. J. Am. Chem. Soc. 2007, 129, 12032.
doi: 10.1021/ja073604c pmid: 20000700 |
|
(c) van Staden, L. F.; Gravestock, D.; Ager, D. J. Chem. Rev. 2002, 31, 195.
pmid: 20000700 |
|
(d) Grubbs, R. H.; Burk, P. L.; Carr, D. D. J. Am. Chem. Soc. 1975, 97, 3265.
doi: 10.1021/ja00844a082 pmid: 20000700 |
|
(e) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746.
doi: 10.1021/cr9002424 pmid: 20000700 |
|
[5] |
(a) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754.
doi: 10.1021/acs.chemrev.6b00622 |
(b) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem. Int. Ed. 2009, 48, 5094.
doi: 10.1002/anie.200806273 |
|
(c) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Rev. 2011, 40, 5068.
|
|
[6] |
(a) Godula, K.; Sames, D. Science 2006, 312, 67.
pmid: 16601184 |
(b) Baudoin, O. Angew. Chem., Int. Ed. 2007, 46, 1373.
doi: 10.1002/anie.200604494 pmid: 16601184 |
|
(c) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., nt. Ed. 2009, 48, 5094.
pmid: 16601184 |
|
[7] |
(a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. Chem. Rev. 2013, 113, 5322.
doi: 10.1021/cr300503r |
(b) Chang, L.; An, Q.; Duan, L.F.; Feng, K.-X.; Zuo, Z.-W. Chem. Rev. 2022, 122, 2429.
doi: 10.1021/acs.chemrev.1c00256 |
|
(c) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem. Rev. 2021, 121, 506.
doi: 10.1021/acs.chemrev.0c00030 |
|
(d) Wang, P.-Z.; Zhao, Q.-Q.; Xiao, W.-J.; Chen, J.-R. Green Synth. Catal. 2020, 1, 42.
|
|
[8] |
(a) Xuan, J.; Zhang, Z. -, G.; Xiao, W.-J. Angew. Chem. Int. Ed. 2015, 54, 15632.
doi: 10.1002/anie.201505731 pmid: 26509837 |
(b) Gooßen, L. J.; Rudolphi, F.; Oppel, C.; Rodríguez, N. Angew. Chem. Int. Ed. 2008, 47, 3043.
doi: 10.1002/anie.200705127 pmid: 26509837 |
|
[9] |
(a) Zuo, Z.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136, 5257.
doi: 10.1021/ja501621q |
(b) Chu, L.; Ohta, C.; Zuo, Z.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136, 10886.
doi: 10.1021/ja505964r |
|
(c) Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2012, 134, 9034.
doi: 10.1021/ja301553c |
|
[10] |
McCarver, Stefan, J.; Noble, A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 624.
doi: 10.1021/ja511913h pmid: 25521443 |
[11] |
Noble, A.; MacMillan, D. W. J. Am. Chem. Soc. 2014, 136, 11602.
doi: 10.1021/ja506094d pmid: 25026314 |
[12] |
Heitz, D. R.; Rizwan, K.; Molander, G. A. J. Org. Chem. 2016, 81, 7308.
doi: 10.1021/acs.joc.6b01207 pmid: 27336284 |
[13] |
Cao, H.; Jiang, H.; Feng, H.; Kwan, J. M. C.; Liu, X.; Wu, J. J. Am. Chem. Soc. 2018, 140, 16360.
doi: 10.1021/jacs.8b11218 |
[14] |
Wang, G.-Z.; Shang, R.; Fu, Y. Org. Lett. 2018, 20, 888.
doi: 10.1021/acs.orglett.8b00023 |
[15] |
Huang, H.; Zhang, Y.; Ji, P.; Mariano, P. S.; Wang, W. Green Synth. Catal. 2021, 2, 27.
|
[16] |
Li, Y.; Shao, Q.; He, H.; Zhu, C.-J.; Xue, X.-S; Xie, J. Nat. Commun. 2022, 13, 10.
doi: 10.1038/s41467-021-27507-x |
[17] |
Darses, S.; Genet, J.-P. Chem. Rev. 2008, 108, 288.
doi: 10.1021/cr0509758 |
[18] |
(a) Sorin, G.; Martinez Mallorquin, R.; Contie, Y.; Baralle, A.; Malacria, M.; Goddard, J.-P.; Fensterbank, L. Angew. Chem., Int. Ed. 2010, 49, 8721.
doi: 10.1002/anie.201004513 pmid: 21341741 |
(b) Fujiwara, Y.; Domingo, V.; Seiple, I. B.; Gianatassio, R.; Del Bel, M.; Baran, P. S. J. Am. Chem. Soc. 2011, 133, 3292.
doi: 10.1021/ja111152z pmid: 21341741 |
|
[19] |
Huang, H.; Jia, K.; Chen, Y. Angew. Chem. Int. Ed. 2015, 54, 1881.
doi: 10.1002/anie.201410176 |
[20] |
Zhang, H.-R.; Chen, D.-Q.; Han, Y.-P.; Qiu, Y.-F.; Jin, D.-P.; Liu, X.-Y. Chem. Commun. 2016, 52, 11827.
doi: 10.1039/C6CC06284A |
[21] |
Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. J. Am. Chem. Soc. 2017, 139, 18307.
doi: 10.1021/jacs.7b10009 |
[22] |
Nakajima, K.; Guo, X.; Nishibayashi, Y. Chem. Asian J. 2018, 13, 3653.
doi: 10.1002/asia.201801542 |
[23] |
(a) Rössler, S. L.; Jelier, B. J.; Magnier, E.; Dagousset, G.; Carreira, E. M.; Togni, Angew. Chem. Int. Ed. 2020, 59, 9264.
doi: 10.1002/anie.201911660 pmid: 31600423 |
(b) Wang, Y.; Bao, Y.; Tang, M.; Ye, Z.; Yuan, Z.; Zhu, G. Chem. Commun. 2022, 58, 3847.
doi: 10.1039/D2CC00369D pmid: 31600423 |
|
[24] |
Ociepa, M.; Turkowska, J.; Gryko, D. ACS Catal. 2018, 8, 11362.
doi: 10.1021/acscatal.8b03437 |
[25] |
Zhou, Q.-Q.; Düsel, S. J. S.; Lu, L.-Q.; König, B.; Xiao, W.-J. Chem. Commun. 2019, 55, 107.
doi: 10.1039/C8CC08362B |
[26] |
Yue, F.; Dong, J.; Liu, Y.; Wang, Q. Org. Lett. 2021, 23, 2477.
doi: 10.1021/acs.orglett.1c00399 |
[27] |
Otsuka, S.; Nogi, K.; Rovis, T.; Yorimitsu, H. Chem. Asian J. 2019, 14, 532.
doi: 10.1002/asia.201801732 |
[28] |
Li, J.; Zhang, J.; Tan, H.; Wang, D. Z. Org. Lett. 2015, 17, 2522.
doi: 10.1021/acs.orglett.5b01053 |
[29] |
Li, Y.; Ge, L.; Qian, B.; Babu, K. R.; Bao, H. Tetrahedron Lett. 2016, 57, 5677.
doi: 10.1016/j.tetlet.2016.11.020 |
[30] |
Um, J.; Yun, H.; Shin, S. Org. Lett. 2016, 18, 484.
doi: 10.1021/acs.orglett.5b03531 |
[31] |
Tlahuext-Aca, A. M.; Hopkinson, N. R.; Garza-Sanchez, A.; Glorius, F. Chem. Eur. J. 2016, 22, 5909.
doi: 10.1002/chem.201600710 |
[32] |
Alcaide, B.; Almendros, P.; Busto, E.; Luna, A. Adv. Synth. Catal. 2016, 358, 1526.
doi: 10.1002/adsc.201600158 |
[33] |
Deng, H. P.; Fan, X. Z.; Chen, Z. H.; Xu, Q. H.; Wu, J. J. Am. Chem. Soc. 2017, 139, 13579.
doi: 10.1021/jacs.7b08158 |
[34] |
Wang, H.; Lu, Q.; Chiang, C.-W.; Luo, Y.; Zhou, J.; Wang, G.; Lei, A. Angew. Chem., Int. Ed. 2017, 56, 595.
doi: 10.1002/anie.201610000 |
[35] |
Guo, L.; Song, F.; Zhu, S.; Li, H.; Chu, L. Nat. Commun. 2018, 9, 4543.
doi: 10.1038/s41467-018-06904-9 |
[36] |
Dauncey, E. M.; Dighe, S. U.; Douglas, J. J.; Leonori, D. Chem. Sci. 2019, 10, 7728.
doi: 10.1039/C9SC02616A |
[37] |
Lai, S.-Z.; Yang, Y.-M.; Xu, H.; Tang, Z.-Y.; Luo, Z. J. Org. Chem. 2020, 85, 15638.
doi: 10.1021/acs.joc.0c01928 |
[38] |
Xuan, J.; Zeng, T. -T.; Feng, Z. -J.; Deng, Q. H.; Chen, J. -R.; Lu, L.-Q.; Xiao, W.-J.; Alper, H. Angew. Chem. Int. Ed. 2015, 54, 1625.
doi: 10.1002/anie.201409999 pmid: 25504920 |
[39] |
Lang, S. B.; O’Nele, K. M.; Tunge, J. A. J. Am. Chem. Soc. 2014, 136, 13606.
doi: 10.1021/ja508317j |
[40] |
Lang, S. B.; O'Nele, K. M.; Douglas, J. T.; Tunge, J. A. Chem. Eur. J. 2015, 21, 18589.
doi: 10.1002/chem.201503644 |
[41] |
Corcé, V.; Chamoreau, L.-M.; Derat, E.; Goddard, J.-P.; Ollivier, C.; Fensterbank, L. Angew. Chem. Int. Ed. 2015, 54, 11414.
doi: 10.1002/anie.201504963 |
[42] |
Zhang, H.-H.; Zhao, J.-J.; Yu, S. J. Am. Chem. Soc. 2018, 140, 16914.
doi: 10.1021/jacs.8b10766 |
[43] |
Gualandi, A.; Rodeghiero, G.; Faraone, A.; Patuzzo, F.; Marchini, M.; Calogero, F.; Perciaccante, R.; Jansen, T. P.; Ceroni, P.; Cozzi, P. G. Chem. Commun. 2019, 55, 6838.
doi: 10.1039/C9CC03344K |
[44] |
Takizawa, K.; Sekino, T.; Sato, S.; Yoshino, T.; Kojima, M.; Matsunaga, S. Angew. Chem. Int. Ed. 2019, 58, 9199.
doi: 10.1002/anie.201902509 pmid: 30998841 |
[45] |
Zhang, M.-M.; Liu, F. Org. Chem. Front. 2018, 5, 3443.
doi: 10.1039/C8QO01046C |
[46] |
Wu, J.; Grant, P. S.; Li, X.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2019, 58, 5697.
doi: 10.1002/anie.201814452 |
[47] |
Lübbesmeyer, M.; Mackay, E. G.; Raycroft, M. A. R.; Elfert, J.; Pratt, D. A.; Studer, A. J. Am. Chem. Soc. 2020, 142, 2609.
doi: 10.1021/jacs.9b12343 |
[48] |
Sekino, T.; Sato, S.; Yoshino, T.; Kojima, M.; Matsunaga, S. Org. Lett. 2022, 24, 2120.
doi: 10.1021/acs.orglett.2c00319 |
[49] |
(a) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Rev. 2016, 45, 2044.
|
(b) Douglas, J. J.; Sevrin, M. J.; Stephenson, C. R. J. Org. Process Res. Dev. 2016, 20, 1134.
doi: 10.1021/acs.oprd.6b00125 |
|
(c) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
doi: 10.1021/acs.chemrev.6b00057 |
|
[50] |
Sun, X.; Chen, J.; Ritter, T. Nat. Chem. 2018, 10, 1229.
doi: 10.1038/s41557-018-0142-4 |
[51] |
Cartwright, K. C.; Tunge, J. A. ACS Catal. 2018, 8, 11801.
doi: 10.1021/acscatal.8b03282 |
[52] |
Cartwright, K. C.; Joseph, E.; Comadoll, C. G.; Tunge, J. A. Chem. Eur. J. 2020, 26, 12454.
doi: 10.1002/chem.202001952 |
[53] |
Tlahuext-Aca, A.; Candish, L.; Garza-Sanchez, R. A.; Glorius, F. ACS Catal. 2018, 8, 1715.
doi: 10.1021/acscatal.7b04281 |
[54] |
Nguyen, V. T.; Nguyen, V. D.; Haug, G. C.; Dang, H. T.; Jin, S.; Li, Z.; Flores-Hansen, C.; Benavides, B. S.; Arman, H. D.; Larionov, O. V. ACS Catal. 2019, 9, 9485.
doi: 10.1021/acscatal.9b02951 |
[55] |
Tu, J.; Gao, H.; Luo, M.; Zhao, L.; Yang, C.; Guo, L.; Xia, W. Green Chem. 2022, 24, 5553.
doi: 10.1039/D2GC01738E |
[56] |
Kumar, A.; Bhatti, T. M.; Goldman, A. S. Chem. Rev. 2017, 117, 12357.
doi: 10.1021/acs.chemrev.7b00247 |
[57] |
West, J. G.; Huang, D.; Sorensen, E. J. Nat. Commun. 2015, 6, 10093.
doi: 10.1038/ncomms10093 |
[58] |
Zhao, H.; McMillan, A. J.; Constantin, T.; Mykura, R. C.; Juliá, F.; Leonori, D. J. Am. Chem. Soc. 2021, 143, 14806.
doi: 10.1021/jacs.1c06768 |
[59] |
Zhou, M.-J.; Zhang, L.; Liu, G.; Xu, C.; Huang, Z. J. Am. Chem. Soc. 2021, 143, 16470.
doi: 10.1021/jacs.1c05479 |
[60] |
Parasram, M.; Chuentragool, P.; Wang, Y.; Shi, Y.; Gevorgyan, V. J. Am. Chem. Soc. 2017, 139, 14857.
doi: 10.1021/jacs.7b08459 pmid: 28992686 |
[61] |
Parasram, M.; Chuentragool, P.; Sarkar, D.; Gevorgyan, V. J. Am. Chem. Soc. 2016, 138, 6340.
doi: 10.1021/jacs.6b01628 pmid: 27149524 |
[62] |
Chuentragool, P.; Parasram, M.; Shi, Y.; Gevorgyan, V. J. Am. Chem. Soc. 2018, 140, 2465.
doi: 10.1021/jacs.8b00488 pmid: 29400959 |
[63] |
Jin, W.; Yu, S. Org. Lett. 2021, 23, 6931.
doi: 10.1021/acs.orglett.1c02509 |
[64] |
Yu, W.-L.; Ren, Z.-G.; Ma, K.-X.; Yang, H.-Q.; Yang, J.-J.; HaZheng, H.; Wu, W.; Xu, P.-F. Chem. Sci. 2022, 13, 7947.
doi: 10.1039/D2SC02291E |
[65] |
Wang, C.-Y.; Azofra, L. M.; Dam, P.; Sebek, M.; Steinfeldt, N.; Rabeah, J.; El-Sepelgy, O. ACS Catal. 2022, 12, 8868.
doi: 10.1021/acscatal.2c01723 |
[66] |
Wang, X.; Li, Y.; Wu, X. ACS Catal. 2022, 12, 3710.
doi: 10.1021/acscatal.2c00204 |
[67] |
Grundmann, C. Justus Liebigs Ann. Chem. 1938, 536, 29.
doi: 10.1002/jlac.19385360103 |
[68] |
Xiao, T.; Mei, M.; He, Y.; Zhou, L. Chem. Commun. 2018, 54, 8865.
doi: 10.1039/C8CC04609C |
[69] |
Wang, S.; Lokesh, N.; Hioe, J.; Gschwind, R. M.; König, B. Chem. Sci. 2019, 10, 4580.
doi: 10.1039/C9SC00711C |
[70] |
(a) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.
doi: 10.1021/jm501100b pmid: 25255204 |
(b) Klumpp, D. A. Synlett 2012, 23, 1590.
doi: 10.1055/s-0031-1290984 pmid: 25255204 |
|
[71] |
(a) Vorbrüggen, H.; Krolikiewcz, K. Tetrahedron Lett. 1983, 24, 889.
doi: 10.1016/S0040-4039(00)81556-7 |
(b) Zhang, G.; Irrgang, T.; Dietel, T.; Kallmeier, F.; Kempe, R. Angew. Chem. Int. Ed. 2018, 57, 9131.
doi: 10.1002/anie.201801573 |
|
(c) Kanyiva, K. S.; Nakao, Y.; Hiyama, T. Angew. Chem. Int. Ed. 2007, 46, 8872.
doi: 10.1002/anie.200703758 |
|
[72] |
Zhu, S.; Qin, J.; Wang, F.; Li, H.; Chu, L. Nat. Commun. 2019, 10, 749.
doi: 10.1038/s41467-019-08669-1 |
[73] |
(a) Li, A.-H.; Dai, L.-X.; Aggarwal, V. K. Chem. Rev. 1997, 97, 2341.
doi: 10.1021/cr960411r pmid: 18072810 |
(b) McGarrigle, E. M.; Myers, E. L.; Illa, O.; Shaw, M. A.; Riches, S. L.; Aggarwal, V. K. Chem. Rev. 2007, 107, 5841.
doi: 10.1021/cr068402y pmid: 18072810 |
|
(c) Lu, L.-Q.; Chen, J.-R.; Xiao, W.-J. Acc. Chem. Res. 2012, 45, 1278.
doi: 10.1021/ar200338s pmid: 18072810 |
|
[74] |
Ye, C.; Cai, B.-G.; Lu, J.; Cheng, X.; Li, L.; Pan, Z.-W.; Xuan, J. J. Org. Chem. 2021, 86, 1012.
doi: 10.1021/acs.joc.0c02500 |
[75] |
Gao, P.-P.; Yan, D.-M.; Bi, M.-H.; Jiang, M.; Xiao, W.-J.; Chen, J.-R. Chem.-Eur. J. 2021, 27, 14195.
doi: 10.1002/chem.202102671 |
[76] |
Tian, X.; Karl, T. A.; Reiter, S.; Yakubov, S.; de Vivie-Riedle, R.; König, B.; Barham, J. P. Angew. Chem., Int. Ed. 2021, 60, 20817.
doi: 10.1002/anie.202105895 |
[77] |
(a) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898.
doi: 10.1021/acs.joc.6b01449 pmid: 32490493 |
(b) Marzo, L.; Pagire; Reiser, S. K. O.; König, B. Angew. Chem., Int. Ed. 2018, 57, 10034.
doi: 10.1002/anie.201709766 pmid: 32490493 |
|
(c) Holmberg-Douglas, N.; Nicewicz, D. A. Chem. Rev. 2022, 122, 1925.
doi: 10.1021/acs.chemrev.1c00311 pmid: 32490493 |
|
(d) Chen, H.; Yu, S.-Y. Org. Biomol. Chem. 2020, 18, 4519.
doi: 10.1039/d0ob00854k pmid: 32490493 |
[1] | 陈雯雯, 张琴, 张松月, 黄芳芳, 张馨尹, 贾建峰. 无光催化剂条件下可见光诱导炔基碘和亚磺酸钠偶联反应[J]. 有机化学, 2024, 44(2): 584-592. |
[2] | 朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17. |
[3] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[4] | 樊思捷, 董武恒, 梁彩云, 王贵超, 袁瑶, 尹作栋, 张兆国. 可见光诱导的自由基环化反应构建4-芳基-1,2-二氢萘类化合物[J]. 有机化学, 2023, 43(9): 3277-3286. |
[5] | 徐伟, 翟宏斌, 程斌, 汪太民. 可见光诱导的钯催化Heck反应[J]. 有机化学, 2023, 43(9): 3035-3054. |
[6] | 杨晓娜, 郭宏宇, 周荣. 可见光促进有机硅化合物参与的化学转化[J]. 有机化学, 2023, 43(8): 2720-2742. |
[7] | 吴敏, 刘博, 袁佳龙, 付强, 汪锐, 娄大伟, 梁福顺. 可见光媒介的C—S键构建反应研究进展[J]. 有机化学, 2023, 43(7): 2269-2292. |
[8] | 黄芬, 罗维纬, 周俊. 基于C—H键断裂的多氯烷基化反应研究进展[J]. 有机化学, 2023, 43(7): 2368-2390. |
[9] | 田钰, 张娟, 高文超, 常宏宏. 二甲亚砜作为甲基化试剂在有机合成中的应用[J]. 有机化学, 2023, 43(7): 2391-2406. |
[10] | 高艳华, 张银潘, 张妍, 宋涛, 杨勇. 可见光驱动表面富含氧空位Nb2O5催化醇氧化反应[J]. 有机化学, 2023, 43(7): 2572-2579. |
[11] | 刘静, 郝健, 沈其龙. 可见光促进的含色氨酸寡肽与YlideFluor试剂的直接三氟甲基化反应研究[J]. 有机化学, 2023, 43(4): 1517-1524. |
[12] | 赵金晓, 魏彤辉, 柯森, 李毅. 可见光催化合成二氟烷基取代的多环吲哚化合物[J]. 有机化学, 2023, 43(3): 1102-1114. |
[13] | 陈祥, 欧阳文韬, 李潇, 何卫民. 可见光诱导有机光催化合成二氟乙基苯并噁嗪[J]. 有机化学, 2023, 43(12): 4213-4219. |
[14] | 赵瑜, 段玉荣, 史时辉, 白育斌, 黄亮珠, 杨晓军, 张琰图, 冯彬, 张建波, 张秋禹. 可见光促进高价碘(III)试剂参与反应的研究进展[J]. 有机化学, 2023, 43(12): 4106-4140. |
[15] | 汤娟, 胡家榆, 祝志强, 蒲守智. 可见光诱导有机膦促进脱氧官能化反应研究进展[J]. 有机化学, 2023, 43(12): 4036-4056. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||