有机化学 ›› 2023, Vol. 43 ›› Issue (4): 1365-1385.DOI: 10.6023/cjoc202209022 上一篇 下一篇
综述与进展
收稿日期:
2022-09-17
修回日期:
2022-10-22
发布日期:
2022-11-21
通讯作者:
魏芳, 肖强
基金资助:
Fang Wei(), Xin Yu, Qiang Xiao()
Received:
2022-09-17
Revised:
2022-10-22
Published:
2022-11-21
Contact:
Fang Wei, Qiang Xiao
Supported by:
文章分享
有机叠氮化合物在天然产物全合成、药物化学以及材料化学等领域有广泛的应用. 叠氮基团在反应过程中倾向于脱除氮气, 转化为多种多样的含氮杂环以及氨基类化合物, 但在许多天然产物全合成的关键步骤中, 都需要保留叠氮基团. 总结了近二十年有机叠氮化合物参与的反应中C—N3键保留的反应类型, 主要包括环加成反应、与不饱和键的加成、Winstein重排和1,2-叠氮迁移等.
魏芳, 余鑫, 肖强. 有机叠氮化合物参与的反应: C—N3基团保留的研究进展[J]. 有机化学, 2023, 43(4): 1365-1385.
Fang Wei, Xin Yu, Qiang Xiao. Advances in C—N3 Retention Reactions Involving Organic Azides[J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1365-1385.
[1] |
(a) Grieß, P. Philos. Trans. R. Soc. London 1864, 13, 377.
|
(b) Grieß, P. Justus Liebigs Ann. Chem. 1865, 135, 131.
|
|
[2] |
Ge, L.; Chiou, M.-F.; Li, Y.; Bao, H. Green Synth. Catal. 2020, 1, 86.
|
[3] |
(a) Zhang, X.; Zhang, Y. Molecules 2013, 18, 7145.
doi: 10.3390/molecules18067145 pmid: 23783454 |
(b) Sletten, E. M.; Bertozzi, C. R. Angew. Chem., nt. Ed. 2009, 48, 6974.
pmid: 23783454 |
|
(c) Devaraj, N. K. ACS Cent. Sci. 2018, 4, 952.
doi: 10.1021/acscentsci.8b00251 pmid: 23783454 |
|
[4] |
For select reviews, see: (a) Huang, X.; Bergsten, T. M.; Groves,, J. T. J. Am. Chem. Soc. 2015, 137, 5300.
doi: 10.1021/jacs.5b01983 |
(b) Fu, J.; Zanoni, G.; Anderson, E. A.; Bi, X. Chem. Soc. Rev. 2017, 46, 7208.
doi: 10.1039/C7CS00017K |
|
(c) Ding, P.-G.; Hu, X.-S.; Zhou, F.; Zhou, J. Org. Chem. Front. 2018, 5, 1542.
doi: 10.1039/C8QO00138C |
|
(d) Hayashi, H.; Kaga, A.; Chiba, S. J. Org. Chem. 2017, 82, 11981.
doi: 10.1021/acs.joc.7b02455 |
|
(e) Sivaguru, P.; Ning, Y.; Bi, X. Chem. Rev. 2021, 121, 4253.
doi: 10.1021/acs.chemrev.0c01124 |
|
[5] |
For selected reviews, see: (a) Kolb, H. C.; Finn, M. G.; Sharpless,, K. B. Angew. Chem., nt. Ed. 2001, 40, 2004.
|
(b) Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302.
doi: 10.1039/b904091a |
|
(c) Wei, F.; Wang, W.; Ma, Y.; Tung, C.-H.; Xu, Z. Chem. Commun. 2016, 52, 14188.
doi: 10.1039/C6CC06194J |
|
[6] |
(a) Jewett, C.; Bertozzi, C. R. Chem. Soc. Rev. 2010, 39, 1272.
pmid: 20349533 |
(b) Agalave, S. G.; Maujan, S. R.; Pore, V. S. Chem.-Asian J. 2011, 6, 2696.
doi: 10.1002/asia.v6.10 pmid: 20349533 |
|
(c) Xi, W.; Scott, T. F.; Kloxin, C. J.; Bowman, C. N. Adv. Funct. Mater. 2014, 24, 2572.
doi: 10.1002/adfm.v24.18 pmid: 20349533 |
|
[7] |
(a) Li, X.-J.; Qiao, J.-B.; Sun, J.; Li, X.-Q.; Gu, P. Org. Lett. 2014, 16, 2865.
doi: 10.1021/ol501058a pmid: 11101392 |
(b) Gu, P.; Sun, J.; Kang, X.-Y.; Yi, M.; Li, X.-Q.; Xue, P.; Li, R. Org. Lett. 2013, 15, 1124.
doi: 10.1021/ol400213f pmid: 11101392 |
|
(c) Lang, S.; Murphy, J. A. Chem. Soc. Rev. 2006, 35, 146.
pmid: 11101392 |
|
(d) Milligan, G. L.; Mossman, C. J.; Aubé, J. J. Am. Chem. Soc. 1995, 117, 10449.
doi: 10.1021/ja00147a006 pmid: 11101392 |
|
(e) Lee, H.-L.; Aubé, J. Tetrahedron 2007, 63, 9007.
doi: 10.1016/j.tet.2007.05.079 pmid: 11101392 |
|
(f) Desai, P.; Schildknegt, K.; Agrios, K.; Mossman, A. C. J.; Milligan, G. L.; Aubé, J. J. Am. Chem. Soc. 2000, 122, 7226.
doi: 10.1021/ja000490v pmid: 11101392 |
|
(g) Liu, C.-F.; Cao, Z.-Q.; Ding, S.-L.; Zhu, J.; Gu, P. Org. Lett. 2021, 23, 1147.
doi: 10.1021/acs.orglett.1c00200 pmid: 11101392 |
|
(h) Kapat, A.; Nyfeler, E.; Giuffredi, G. T.; Renaud, P. J. Am. Chem. Soc. 2009, 131, 17746.
doi: 10.1021/ja908933s pmid: 11101392 |
|
(i) Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260.
doi: 10.1021/ja053804t pmid: 11101392 |
|
(j) Pearson, W. H.; Hutta, D. A.; Fang, W.-K. J. Org. Chem. 2000, 65, 8326.
pmid: 11101392 |
|
[8] |
(a) Curtius, T. Prakt. Chem. 1894, 50, 275.
doi: 10.1002/prac.18940500125 |
(b) Curtius, T. Ber. Dtsch. Chem. Ges. 1890, 23, 3023.
doi: 10.1002/cber.v23:2 |
|
[9] |
(a) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., nt. Ed. 2005, 44, 5188.
|
(b) Wang, X.; Hou, M.; Chen, L.; Meng, Y.; Li, Y. Chemistry 2004, 67, 418. (in Chinese)
|
|
(王晓季, 侯曼玲, 陈立功, 孟祎, 李阳, 化学通报, 2004, 67, 418.)
|
|
[10] |
(a) Bednarek, C.; Wehl, I.; Jung, N.; Schepers, U.; Bräse, S. Chem. Rev. 2020, 120, 4301.
doi: 10.1021/acs.chemrev.9b00665 |
(b) Köhn, M.; Breinbauer, R. Angew. Chem., nt. Ed. 2004, 43, 3106.
|
|
(c) Schilling, C. I.; Jung, N.; Biskup, M.; Schepers, U.; Bräse, S. Chem. Soc. Rev. 2011, 40, 4840.
doi: 10.1039/c0cs00123f |
|
[11] |
(a) Lao, Z.; Toy, P. H. Beilstein J. Org. Chem. 2016, 12, 2577.
doi: 10.3762/bjoc.12.253 |
(b) Palacios, F.; Alonso, C.; Aparicio, D.; Rubiales, G.; de los Santos, J. M. Tetrahedron 2007, 63, 523.
doi: 10.1016/j.tet.2006.09.048 |
|
[12] |
(a) Soni, J. P.; Kadagathur, M.; Shankaraiah, N. Asian J. Org. Chem. 2021, 10, 3186.
doi: 10.1002/ajoc.v10.12 |
(b) Liu, Z.-K.; Zhao, Q.-Q.; Gao, Y.; Hou, Y.-X.; Hu, X.-Q. Adv. Synth. Catal. 2021, 363, 411.
doi: 10.1002/adsc.v363.2 |
|
[13] |
Thirupathi, N.; Wei, F.; Tung, C.-H.; Xu, Z. Nat. Commun. 2019, 10, 3158.
doi: 10.1038/s41467-019-11134-8 pmid: 31320649 |
[14] |
Li, S.; Lu, H.; Xu, Z.; Wei, F. Org. Chem. Front. 2021, 8, 1770.
doi: 10.1039/D0QO01597K |
[15] |
Shen, M.-H.; Liang, X.-C.; Li, C.; Wu, H.; Qu, H.-Y.; Wang, F.-M.; Xu, H.-D. Tetrahedron Lett. 2019, 60, 1025.
doi: 10.1016/j.tetlet.2019.03.018 |
[16] |
Nakanishi, T.; Kikuchi, J.; Kaga, A.; Chiba, S.; Terada, M. Chem.- Eur. J. 2020, 26, 8230.
doi: 10.1002/chem.v26.37 |
[17] |
For selected reviews, see: (a) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette,, A. B. Chem. Rev. 2003, 103, 977.
doi: 10.1021/cr010007e |
(b) Mato, M.; Franchino, A.; García-Morales, C.; Echavarren, A. M. Chem. Rev. 2021, 121, 8613.
doi: 10.1021/acs.chemrev.0c00697 |
|
(c) Pons, A.; Delion, L.; Poisson, T.; Charette, A. B.; Jubault, P. Acc. Chem. Res. 2021, 54, 2969.
doi: 10.1021/acs.accounts.1c00261 |
|
[18] |
Gu, P.; Su, Y.; Wu, X.-P.; Sun, J.; Liu, W.; Xue, P.; Li, R. Org. Lett. 2012, 14, 2246.
doi: 10.1021/ol3006437 |
[19] |
López, E.; López, L. A. Angew. Chem., nt. Ed. 2017, 56, 5121.
|
[20] |
For recent reviews, see: (a) Sokolova, O. O.; Bower,, J. F. F. Chem. Rev. 2021, 121, 80.
doi: 10.1021/acs.chemrev.0c00166 |
(b) Liu, J.; Liu, R.; Wei, Y.; Shi, M. Trends Chem. 2019, 1, 779.
doi: 10.1016/j.trechm.2019.06.012 |
|
(c) Xia, Y.; Liu, X.; Feng, X. Angew. Chem.,Int. Ed. 2021, 60, 9192.
doi: 10.1002/anie.v60.17 |
|
(d) Pirenne, V.; Muriel, B.; Waser, J. Chem. Rev. 2021, 121, 227.
doi: 10.1021/acs.chemrev.0c00109 |
|
(e) Liu, W.; Dou, L.; Mu, W. Chin. J. Org. Chem. 2020, 40, 1150. (in Chinese)
doi: 10.6023/cjoc201910019 |
|
(刘文竹, 豆立娟, 母伟花, 有机化学, 2020, 40, 1150.)
doi: 10.6023/cjoc201910019 |
|
(f) Cohen, Y.; Cohen, A.; Marek, I. Chem. Rev. 2021, 121, 140.
doi: 10.1021/acs.chemrev.0c00167 |
|
[21] |
Dey, R.; Banerjee, P. Org. Lett. 2017, 19, 304.
doi: 10.1021/acs.orglett.6b03276 |
[22] |
Kaga, A.; Gandamana, D. A.; Tamura, S.; Demirelli, M.; Chiba, S. Synlett 2017, 28, 1091.
doi: 10.1055/s-0036-1588703 |
[23] |
(a) Patonay, T.; Hoffman, R. V. J. Org. Chem. 1995, 60, 2368.
doi: 10.1021/jo00113a015 |
(b) Patonay, T.; Juhász-Tóth, É; Bényei, A. Eur. J. Org. Chem. 2002, 2002, 285.
doi: 10.1002/1099-0690(20021)2002:2【-逻*辑*与-】amp;lt;285::AID-EJOC285【-逻*辑*与-】amp;gt;3.0.CO;2-J |
|
(c) Juhász-Tóth, É; Patonay, T. Eur. J. Org. Chem. 2002, 2002, 3055.
doi: 10.1002/(ISSN)1099-0690 |
|
(d) Patonay, T.; Jekő, J.; Juhász-Tóth, É. Eur. J. Org. Chem. 2008, 2008, 1441.
doi: 10.1002/(ISSN)1099-0690 |
|
[24] |
Knittel, D.; Hemetsberger, H.; Weidmann, H. Monatsh. Chem. 1970, 101, 157.
doi: 10.1007/BF00907535 |
[25] |
Takeuchi, H.; Yanagida, S.; Ozaki, T.; Hagiwara, S.; Eguchi, S. J. Org. Chem. 1989, 54, 431.
doi: 10.1021/jo00263a033 |
[26] |
Patel, J.; Clavé, G.; Renard, P.-Y.; Franck, X. Angew. Chem.,Int. Ed. 2008, 47, 4224.
doi: 10.1002/(ISSN)1521-3773 |
[27] |
Martínez-Castañeda, Á.; Kędziora, K.; Lavandera, I.; Rodrıíguez-Solla, H.; Concellón, C.; del Amo, V. Chem. Commun. 2014, 50, 2598.
doi: 10.1039/c3cc49371g |
[28] |
Weidner, K.; Sun, Z.; Kumagai, N.; Shibasaki, M. Angew. Chem., nt. Ed. 2015, 54, 6236.
|
[29] |
Noda, H.; Amemiya, F.; Weidner, K.; Kumagai, N.; Shibasaki, M. Chem. Sci. 2017, 8, 3260.
doi: 10.1039/C7SC00330G |
[30] |
Okumuş, S.; Tanyeli, C.; Demir, A. Tetrahedron Lett. 2014, 55, 4302.
doi: 10.1016/j.tetlet.2014.06.018 |
[31] |
Chowdari, N. S.; Ahmad, M.; Albertshofer, K.; Tanaka, F.; Barbas III, C. F. Org. Lett. 2006, 8, 2839.
pmid: 16774270 |
[32] |
Sun, Z.; Weidner, K.; Kumagai, N.; Shibasaki, M. Chem.-Eur. J. 2015, 21, 17574.
doi: 10.1002/chem.201503921 |
[33] |
Ye, X.; Pan, Y.; Yang, X. Chem. Commun. 2020, 56, 98.
doi: 10.1039/C9CC08000G |
[34] |
Karahan, S.; Tanyeli, C. Org. Biomol. Chem. 2020, 18, 479.
doi: 10.1039/c9ob02208b pmid: 31845945 |
[35] |
Ding, P.-G.; Zhou, F.; Wang, X.; Zhao, Q.-H.; Yu, J.-S.; Zhou, J. Chem. Sci. 2020, 11, 3852.
doi: 10.1039/D0SC00475H |
[36] |
Ding, P.-G.; Hu, X.-S.; Yu, J.-S.; Zhou, J. Org. Lett. 2020, 22, 8578.
doi: 10.1021/acs.orglett.0c03178 |
[37] |
Gagneux, A.; Winstein, S.; Young, W. G. J. Am. Chem. Soc. 1960, 82, 5956.
doi: 10.1021/ja01507a045 |
[38] |
Carlson, A. S.; Topczewski, J. J. Org. Biomol. Chem. 2019, 17, 4406.
doi: 10.1039/C8OB03178A |
[39] |
(a) Ott, A. A.; Packard, M. H.; Ortuño, M. A.; Johnson, A.; Suding, V. P.; Cramer, C. J.; Topczewski, J. J. J. Org. Chem. 2018, 83, 8214.
doi: 10.1021/acs.joc.8b00961 |
(b) Padwa, A.; Sá, M. M. Tetrahedron Lett. 1997, 38, 5087.
doi: 10.1016/S0040-4039(97)01133-7 |
|
[40] |
(a) Cardillo, G.; Fabbroni, S.; Gentilucci, L.; Perciaccante, R.; Piccinelli, F.; Tolomelli, A. Org. Lett. 2005, 7, 533.
doi: 10.1021/ol047815n |
(b) Daher, S. S.; Lee, M.; Jin, X.; Teijaro, C. N.; Barnett, P. R.; Freundlich, J. S.; Andrade, R. B. Eur. J. Med. Chem. 2022, 233, 114213.
doi: 10.1016/j.ejmech.2022.114213 |
|
(c) Forster, D.; Guo, W.; Wang, Q.; Zhu, J. ACS Catal. 2021, 11, 10871.
doi: 10.1021/acscatal.1c03545 |
|
(d) Çetinkaya, Y.; Maraş, A.; Göksu, S. Tetrahedron 2021, 92, 132272.
doi: 10.1016/j.tet.2021.132272 |
|
(e) Trost, B. M.; Pulley, S. R. Tetrahedron Lett. 1995, 36, 8737.
doi: 10.1016/0040-4039(95)01898-R |
|
[41] |
(a) Ding, C.; Zhang, Y.; Chen, H.; Wild, C.; Wang, T.; White, M. A.; Shen, Q.; Zhou, J. Org. Lett. 2013, 15, 3718.
doi: 10.1021/ol4015865 |
(b) Lauzon, S.; Tremblay, F.; Gagnon, D.; Godbout, C.; Chabot, C.; Mercier-Shanks, C.; Perreault, S.; DeSève, H.; Spino, C. J. Org. Chem. 2008, 73, 6239.
doi: 10.1021/jo800817p |
|
(c) Chang, Y.-K.; Lo, H.-J.; Yan, T.-H. Org. Lett. 2009, 11, 4278.
doi: 10.1021/ol9016194 |
|
(d) Trost, B. M.; Pulley, S. R. J. Am. Chem. Soc. 1995, 117, 10143.
doi: 10.1021/ja00145a038 |
|
(e) Hu, T.; Panek, J. S. J. Am. Chem. Soc. 2002, 124, 11368.
doi: 10.1021/ja0206700 |
|
(f) Askin, D.; Angst, C.; Danishefsky, S. J. Org. Chem. 1985, 50, 5005.
doi: 10.1021/jo00224a082 |
|
[42] |
(a) Vallejos, M. M.; Labadie, G. R. RSC Adv. 2020, 10, 4404.
doi: 10.1039/C9RA10093H pmid: 24635056 |
(b) Moynihan, L.; Chadda, R.; McArdle, P.; Murphy, P. V. Org. Lett. 2015, 17, 6226.
doi: 10.1021/acs.orglett.5b03209 pmid: 24635056 |
|
(c) Liu, R.; Gutierrez, O.; Tantillo, D. J.; Aubé, J. J. Am. Chem. Soc. 2012, 134, 6528.
doi: 10.1021/ja300369c pmid: 24635056 |
|
(d) Vekariya, R, H.; Liu, R.; Aubé, J. Org. Lett. 2014, 16, 1844.
doi: 10.1021/ol500011f pmid: 24635056 |
|
(e) Liu, E.-C.; Topczewski, J. J. J. Am. Chem. Soc. 2021, 143, 5308.
doi: 10.1021/jacs.1c01354 pmid: 24635056 |
|
[43] |
Feldman, A. K.; Colasson, B.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. 2005, 127, 13444.
pmid: 16190677 |
[44] |
(a) Murahashi, S.-I.; Saito, T.; Hanaoka, H.; Murakami, Y.; Naota, T.; Kumobayashi, H.; Akutagawa, S. J. Org. Chem. 1993, 58, 2929.
doi: 10.1021/jo00063a002 |
(b) Zhang, Y.; Shen, Z.; Tang, J.; Zhang, Y.; Kong, L.; Zhang, Y. Org. Biomol. Chem. 2006, 4, 1478.
doi: 10.1039/b518200j |
|
[45] |
(a) Dave, P. R.; Duddu, R.; Yang, K.; Damavarapu, R.; Gelber, N.; Surapaneni, R.; Gilardi, R. Tetrahedron Lett. 2004, 45, 2159.
doi: 10.1016/j.tetlet.2004.01.037 pmid: 10814002 |
(b) Haussener, T.; Looper, R. E. Org. Lett. 2012, 14, 3632.
doi: 10.1021/ol301461e pmid: 10814002 |
|
(c) Block, O.; Klein, G.; Altenbach, H.-J.; Brauer, D. J. J. Org. Chem. 2000, 65, 716.
pmid: 10814002 |
|
(d) Zozik, Y.; Salamci, E.; Kilic, A. Tetrahedron Lett. 2017, 58, 4822.
doi: 10.1016/j.tetlet.2017.11.014 pmid: 10814002 |
|
(e) Kaya Ö., Şengül, M. E.; Menzek, A.; Şahin, E.; Gür, B. Tetrahedron 2016, 72, 2828.
doi: 10.1016/j.tet.2016.03.066 pmid: 10814002 |
|
[46] |
(a) Guo, H.; O'Doherty, G. A. Org. Lett. 2006, 8, 1609.
doi: 10.1021/ol0602811 pmid: 24090215 |
(b) Plietker, B.; Niggemann, M. Org. Lett. 2003, 5, 3353.
pmid: 24090215 |
|
(c) Shih, T.-L.; Kuo, W.-S.; Lin, Y.-L. Tetrahedron Lett. 2004, 45, 5751.
doi: 10.1016/j.tetlet.2004.05.140 pmid: 24090215 |
|
(d) Shih, T.-L.; Li, H.-Y.; Ke, M.-S.; Kuo, W.-S. Synth. Commun. 2008, 38, 4139.
doi: 10.1080/00397910802281429 pmid: 24090215 |
|
(e) Podeschwa, M. A. L.; Plettenburg, O.; Altenbach, H.-J. Org. Biomol. Chem. 2003, 1, 1919.
pmid: 24090215 |
|
(f) Plietker, B.; Niggemann, M.; Pollrich, A. Org. Biomol. Chem. 2004, 2, 1116.
pmid: 24090215 |
|
(g) Adabala, P. J. P.; LeGresley, E. B.; Bance, N.; Niikura, M.; Pinto, B. M. J. Org. Chem. 2013, 78, 10867.
doi: 10.1021/jo401854w pmid: 24090215 |
|
[47] |
(a) Schuster, M.; He, W.-F.; Blechert, S. Tetrahedron Lett. 2001, 42, 2289.
doi: 10.1016/S0040-4039(01)00137-X |
(b) Yaragorla, S.; Muthyala, R. Tetrahedron Lett. 2010, 51, 467.
doi: 10.1016/j.tetlet.2009.10.120 |
|
(c) Takaoka, Y.; Kajimoto, T.; Wong, C.-H. J. Org. Chem. 1993, 58, 4809.
doi: 10.1021/jo00070a013 |
|
(d) Nugent, T. C.; Hudlicky, T. J. Org. Chem. 1998, 63, 510.
doi: 10.1021/jo971335a |
|
(e) Hung, R. R.; Straub, J. A.; Whitesides, G. M. J. Org. Chem. 1991, 56, 3849.
doi: 10.1021/jo00012a015 |
|
[48] |
Ott, A. A.; Goshey, C. S.; Topczewski, J. J. J. Am. Chem. Soc. 2017, 139, 7737.
doi: 10.1021/jacs.7b04203 |
[49] |
Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
doi: 10.1021/cr00032a009 |
[50] |
Liu, E.-C.; Topczewski, J. J. J. Am. Chem. Soc. 2019, 141, 5135.
doi: 10.1021/jacs.9b01091 |
[51] |
Porter, M. R.; Shaker, R. M.; Calcanas, C.; Topczewski, J. J. J. Am. Chem. Soc. 2018, 140, 1211.
doi: 10.1021/jacs.7b11299 |
[52] |
(a) Anderson, C. E.; Overman, L. E. J. Am. Chem. Soc. 2003, 125, 12412.
pmid: 26348569 |
(b) Arnold, J. S.; Nguyen, H. M. J. Am. Chem. Soc. 2012, 134, 8380.
doi: 10.1021/ja302223p pmid: 26348569 |
|
(c) Zhang, Q.; Stockdale, D. P.; Mixdorf, J. C.; Topczewski, J. J.; Nguyen, H. M. J. Am. Chem. Soc. 2015, 137, 11912.
doi: 10.1021/jacs.5b07492 pmid: 26348569 |
|
(d) Overman, L. E. J. Am. Chem. Soc. 1974, 96, 597.
doi: 10.1021/ja00809a054 pmid: 26348569 |
|
(e) Overman, L. E. J. Am. Chem. Soc. 1976, 98, 2901.
doi: 10.1021/ja00426a038 pmid: 26348569 |
|
[53] |
Craig, D.; Harvey, J. W.; O’Brien, A. G.; White, A. J. P. Org. Biomol. Chem. 2011, 9, 7057.
doi: 10.1039/c1ob05972f |
[54] |
Tjeng, A. A.; Handore, K. L.; Batey, R. A. Org. Lett. 2020, 22, 3050.
doi: 10.1021/acs.orglett.0c00801 pmid: 32223252 |
[55] |
Thevenet, N.; de la Sovera, V.; Vila, M. A.; Veiga, N.; Gonzalez, D.; Seoane, G.; Carrera, I. Org. Lett. 2015, 17, 684.
doi: 10.1021/ol503708v pmid: 25629295 |
[56] |
de la Sovera, V.; Martínez, S.; Umpiérrez, D.; Vila, M. A.; Gonzalez, D.; Seoane, G.; Veiga, N.; Carrera, I. Eur. J. Org. Chem. 2022, 2022, 89.
|
[57] |
de la Sovera, V.; Garay, P.; Thevenet, N.; Macías, M. A.; Gonzalez, D.; Seoane, G.; Carrera, I. Tetrahedron Lett. 2016, 57, 2484.
doi: 10.1016/j.tetlet.2016.04.072 |
[58] |
Liu, R.; Wei, Z.; Wang, J.; Liu, Y.; Xue, H. Chem. Commun. 2020, 56, 5038.
doi: 10.1039/D0CC01316A |
[59] |
Liu, R.; Zhang, Y.; Xu, J. Chem. Commun. 2021, 57, 8913.
doi: 10.1039/D1CC02520A |
[60] |
Abegg, T.; Cossy, J.; Meyer, C. Org. Lett. 2022, 24, 4954.
doi: 10.1021/acs.orglett.2c01888 |
[61] |
Gai, Y.; Ning, Y.; Sivaguru, P.; Li, X.; Zhao, Y.; Wu, J.; Bi, X. Sci. China: Chem. 2020, 63, 460.
|
[62] |
Ning, Y.; Sivaguru, P.; Zanoni, G.; Anderson E. A. Bi, X. Chem 2020, 6, 486.
doi: 10.1016/j.chempr.2019.12.004 |
[63] |
(a) Zheng, M.; Hwang, S.; Snyder, T.; Aquilina, J.; Proni, G.; Paz, M. M.; Pradhan, P.; Cheng, S.-Y.; Chanpeil, E. Bioorg. Chem. 2019, 92, 103280.
doi: 10.1016/j.bioorg.2019.103280 |
(b) Aga, M. A.; Rayees, S.; Rouf, A.; Kumar, B.; Sharma, A.; Nagaraju, P. V. V. S.; Singh, G.; Taneja, S. Bioorg. Med. Chem. 2017, 25, 1440.
doi: 10.1016/j.bmc.2017.01.006 |
|
[64] |
McNulty, J.; Zepeda-Velázquez, C. Angew. Chem., nt. Ed. 2014, 53, 8450.
|
[65] |
(a) Poe, S. L.; Morken, J. P. Angew. Chem., nt. Ed. 2011, 50, 4189.
|
(b) Collins, J.; Rinner, U.; Moser, M.; Hudlický, T.; Ghiviriga, I.; Romero, A. E.; Kornienko, A.; Ma, D.; Griffin, C.; Pandey, S. J. Org. Chem. 2010, 75, 3069.
doi: 10.1021/jo1003136 |
|
(c) Chida, N.; Jitsuoka, M.; Yoshiyuki, Y.; Ohtsuka, M.; Ogawa, S. Heterocycles 1996, 43, 1385.
doi: 10.3987/COM-96-7481 |
|
(d) Fujimura, T.; Shibuya, M.; Ogasawara, K.; Iwabuchi, Y. Heterocycles 2005, 66, 167.
doi: 10.3987/COM-05-S(K)68 |
|
[66] |
Bai, D.; Li, L.; Li, X.; Lu, Y.; Wu, Y.; Reddy, B. R. P. P.; Ning, Y. Chem.-Asian J. 2020, 15, 4038.
doi: 10.1002/asia.v15.23 |
[67] |
(a) Kavala, M.; Mathia, F.; Kozisek, J.; Szolcsanyi, P. J. Nat. Prod. 2011, 74, 803.
doi: 10.1021/np100852p pmid: 22242696 |
(b) Bélanger, G.; Dupuis, M.; Larouche-Gauthier, R. J. Org. Chem. 2012, 77, 3215.
doi: 10.1021/jo202651t pmid: 22242696 |
|
(c) Feldman, K. S.; Antoline, J. F. Org. Lett. 2012, 14, 934.
doi: 10.1021/ol203463n pmid: 22242696 |
|
(d) Fesenko, A. A.; Dem'Yachenko, E. A.; Fedorova, G. A.; Shutalev, A. D. Monatsh. Chem. 2013, 144, 351.
doi: 10.1007/s00706-012-0869-3 pmid: 22242696 |
|
[68] |
Carlson, A. S.; Calcanas, C.; Brunner, R. M.; Topczewski, J. J. Org. Lett. 2018, 20, 1604.
doi: 10.1021/acs.orglett.8b00344 pmid: 29498865 |
[69] |
Wang, Y.-F.; Hu, M.; Hayashi, H.; Xing, B.; Chiba, S. Org. Lett. 2016, 18, 992.
doi: 10.1021/acs.orglett.6b00116 |
[70] |
(a) Xu, Y.; Zhai, T.-Y.; Xu, Z.; Ye, L.-W. Trends Chem. 2022, 4, 191.
doi: 10.1016/j.trechm.2021.12.010 pmid: 35699935 |
(b) Zhao, T.-Y.; Xiao, L.-J.; Zhou, Q.-L. Angew. Chem., nt. Ed. 2022, 61, e2022115702.
pmid: 35699935 |
|
(c) Shiomi, S.; Shennan, B. D. A.; Yamazaki, K.; Fuentes de Arriba, Á. L.; Vasu, D.; Hamlin, T. A.; Dixon, D. J. J. Am. Chem. Soc. 2022, 144, 1407.
doi: 10.1021/jacs.1c12040 pmid: 35699935 |
|
(d) Aquilina, J. M.; Smith, M. W. J. Am. Chem. Soc. 2022, 144, 11088.
doi: 10.1021/jacs.2c04487 pmid: 35699935 |
|
[71] |
Wu, X.-P.; Su, Y.; Gu, P. Org. Lett. 2014, 16, 5339.
doi: 10.1021/ol502608d |
[72] |
Blond, A.; Moumné, R.; Bégis, G.; Pasco, M.; Lecourt, T.; Micouin, L. Tetrahedron Lett. 2011, 52, 3201.
doi: 10.1016/j.tetlet.2011.04.034 |
[73] |
Qiao, J.-B.; Zhao, Y.-M.; Gu, P. Org. Lett. 2016, 18, 1984.
doi: 10.1021/acs.orglett.6b00570 |
[74] |
Meng, J. C.; Fokin, V. V.; Finn, M. G. Tetrahedron Lett. 2005, 46, 4543.
doi: 10.1016/j.tetlet.2005.05.019 |
[75] |
Wang, C.; Zhu, R.-Y.; Liao, K.; Zhou, F.; Zhou, J. Org. Lett. 2020, 22, 1270.
doi: 10.1021/acs.orglett.9b04522 pmid: 31999130 |
[76] |
Ott, A. A.; Topczewski, J. J. Org. Lett. 2018, 20, 7253.
doi: 10.1021/acs.orglett.8b03168 |
[77] |
Chen, Y.; Wang, J.; Wu, X.; Zhu, C. ACS Org. Inorg. Au 2022, 2, 392.
doi: 10.1021/acsorginorgau.2c00017 |
[1] | 李梦竹, 孟博莹, 兰文捷, 傅滨. 邻亚甲醌与硫叶立德反应合成2,3-二取代苯并二氢呋喃化合物[J]. 有机化学, 2024, 44(1): 195-203. |
[2] | 王化坤, 任晓龙, 宣宜宁. 卤盐催化的α,β-环氧羧酸酯与异氰酸酯[3+2]环加成反应研究[J]. 有机化学, 2024, 44(1): 251-258. |
[3] | 马虎, 黄丹凤, 王克虎, 唐朵朵, 冯杨, 任园园, 王君娇, 胡雨来. 3-(三氟甲基)吡唑类化合物的合成[J]. 有机化学, 2023, 43(9): 3257-3267. |
[4] | 陈祖良, 魏颖静, 张俊良. 供体-受体氮杂环丙烷碳-碳键断裂的环加成反应研究进展[J]. 有机化学, 2023, 43(9): 3078-3088. |
[5] | 王熠, 张键, 刘飏子, 罗晓燕, 邓卫平. 钯催化不对称[3+4]环加成构建吲哚并环庚烷[J]. 有机化学, 2023, 43(8): 2864-2877. |
[6] | 孔德亮, 戴闻, 赵怡玲, 陈艺林, 朱红平. 脒基胺硼基硅宾与单酮和二酮的氧化环加成反应研究[J]. 有机化学, 2023, 43(5): 1843-1851. |
[7] | 李春生, 连晓琪, 陈莲芬. 铜催化亚砜叶立德与邻苯二胺[4+2]环加成反应[J]. 有机化学, 2023, 43(4): 1492-1498. |
[8] | 戴春波, 夏思奇, 陈晓玉, 杨丽敏. 氮杂环卡宾(NHC)催化[4+3]环加成反应构建4-氨基苯并环庚烯内酯[J]. 有机化学, 2023, 43(3): 1084-1090. |
[9] | 王海清, 杨爽, 张宇辰, 石枫. 邻羟基苄醇参与的催化不对称反应研究进展[J]. 有机化学, 2023, 43(3): 974-999. |
[10] | 刘悦灵, 钟欣欣, 张干兵. Pd(0)催化1-R-3-苯基亚丙基环丙烷(R=Me/H)与呋喃甲醛[3+2]环加成反应机理的密度泛函理论研究[J]. 有机化学, 2023, 43(2): 660-667. |
[11] | 张建涛, 邓雅文, 莫诺琳, 陈莲芬. 自由基介导的α,α-二芳基烯丙醇1,2-芳基迁移反应研究进展[J]. 有机化学, 2023, 43(2): 426-435. |
[12] | 潘康, 徐凡. 硅氨基镧化合物催化合成磷酸烯醇酯[J]. 有机化学, 2023, 43(12): 4261-4267. |
[13] | 梁俊秀, 刘亚洲, 王阿木, 吴彦超, 马小锋, 李惠静. 基于原位形成的氮杂邻亚甲基苯醌和卤代萘酚的分子间[4+1]螺环化/去芳香化反应[J]. 有机化学, 2023, 43(11): 3888-3899. |
[14] | 张维露, 陈绍维, 沈晓. 镍催化苯并硅杂环丁烷与酰基硅烷的[4+2]环化反应[J]. 有机化学, 2023, 43(10): 3635-3643. |
[15] | 覃小婷, 邹宁, 农彩梅, 莫冬亮. 九元氮杂环化合物合成最新研究进展[J]. 有机化学, 2023, 43(1): 130-155. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||