有机化学 ›› 2023, Vol. 43 ›› Issue (9): 3188-3195.DOI: 10.6023/cjoc202303035 上一篇 下一篇
研究论文
收稿日期:
2023-03-23
修回日期:
2023-05-18
发布日期:
2023-06-06
基金资助:
Chun-Xia Cheng, Lu-Ping Wu, Feng Sha, Xin-Yan Wu()
Received:
2023-03-23
Revised:
2023-05-18
Published:
2023-06-06
Contact:
E-mail: Supported by:
文章分享
发展了新型手性双功能叔膦-酰胺催化4-甲基香豆素化合物与外消旋Morita-Baylis-Hillman碳酸酯之间的插烯烯丙基烷基化反应, 反应条件温和, 底物适用范围广泛. 在10~15 mol%的基于手性环己烷骨架的叔膦-酰胺催化剂C10作用下, 相应产物的产率达到87%~99%, 对映选择性最高达98% ee, 为手性香豆素衍生物的不对称合成提供了有效的方法.
程春霞, 吴露平, 沙风, 伍新燕. 手性叔膦-酰胺不对称催化香豆素与Morita-Baylis-Hillman碳酸酯之间的插烯烯丙基烷基化反应[J]. 有机化学, 2023, 43(9): 3188-3195.
Chun-Xia Cheng, Lu-Ping Wu, Feng Sha, Xin-Yan Wu. Enantioselective Vinylogous Allylic Alkylation of Coumarins with Morita-Baylis-Hillman Carbonates Catalyzed by Chiral Phosphine-Amide[J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3188-3195.
Entry | Catalyst | Time/h | Yieldb/% | eec/% |
---|---|---|---|---|
1 | C1 | 24 | 41 | 72 |
2 | C2 | 24 | 44 | 61 |
3 | C3 | 48 | 47 | 85 |
4 | C4 | 48 | 37 | 33 |
5 | C5 | 10 | 56 | 84 |
6 | C6 | 28 | 48 | 80 |
7 | C7 | 9 | 87 | 86 |
8 | C8 | 11 | 66 | 84 |
9 | C9 | 8 | 56 | 48 |
10 | C10 | 9 | 90 | 90 |
Entry | Catalyst | Time/h | Yieldb/% | eec/% |
---|---|---|---|---|
1 | C1 | 24 | 41 | 72 |
2 | C2 | 24 | 44 | 61 |
3 | C3 | 48 | 47 | 85 |
4 | C4 | 48 | 37 | 33 |
5 | C5 | 10 | 56 | 84 |
6 | C6 | 28 | 48 | 80 |
7 | C7 | 9 | 87 | 86 |
8 | C8 | 11 | 66 | 84 |
9 | C9 | 8 | 56 | 48 |
10 | C10 | 9 | 90 | 90 |
Entry | Solvent | Conc./(mol•L–1) | Time/h | Yieldb/% | eec/% | |
---|---|---|---|---|---|---|
1 | Toluene | 0.2 | 24 | 75 | 77 | |
2 | CH2Cl2 | 0.2 | 9 | 90 | 90 | |
3 | CHCl3 | 0.2 | 9 | 78 | 88 | |
4 | ClCH2CH2Cl | 0.2 | 11 | 75 | 82 | |
5 | THF | 0.2 | 28 | 69 | 73 | |
6 | EtOAc | 0.2 | 28 | 76 | 71 | |
7 | CH3CN | 0.2 | 4 | 14 | 74 | |
8 | CH3OH | 0.2 | 24 | 14 | 36 | |
9d | CH2Cl2 | 0.2 | 9 | 83 | 82 | |
10e | CH2Cl2 | 0.2 | 9 | 89 | 89 | |
11 | CH2Cl2 | 0.3 | 7 | 86 | 88 | |
12 | CH2Cl2 | 0.1 | 24 | 87 | 86 | |
13f | CH2Cl2 | 0.2 | 120 | 82 | 94 | |
14f | CH2Cl2 | 0.4 | 72 | 81 | 94 | |
15g | CH2Cl2 | 0.2 | 12 | 93 | 86 | |
16f,g | CH2Cl2 | 0.4 | 72 | 81 | 90 |
Entry | Solvent | Conc./(mol•L–1) | Time/h | Yieldb/% | eec/% | |
---|---|---|---|---|---|---|
1 | Toluene | 0.2 | 24 | 75 | 77 | |
2 | CH2Cl2 | 0.2 | 9 | 90 | 90 | |
3 | CHCl3 | 0.2 | 9 | 78 | 88 | |
4 | ClCH2CH2Cl | 0.2 | 11 | 75 | 82 | |
5 | THF | 0.2 | 28 | 69 | 73 | |
6 | EtOAc | 0.2 | 28 | 76 | 71 | |
7 | CH3CN | 0.2 | 4 | 14 | 74 | |
8 | CH3OH | 0.2 | 24 | 14 | 36 | |
9d | CH2Cl2 | 0.2 | 9 | 83 | 82 | |
10e | CH2Cl2 | 0.2 | 9 | 89 | 89 | |
11 | CH2Cl2 | 0.3 | 7 | 86 | 88 | |
12 | CH2Cl2 | 0.1 | 24 | 87 | 86 | |
13f | CH2Cl2 | 0.2 | 120 | 82 | 94 | |
14f | CH2Cl2 | 0.4 | 72 | 81 | 94 | |
15g | CH2Cl2 | 0.2 | 12 | 93 | 86 | |
16f,g | CH2Cl2 | 0.4 | 72 | 81 | 90 |
Entry | R1 | R2 | R3 | Time/h | 3 | Yieldb/% | eec/% |
---|---|---|---|---|---|---|---|
1 | H | 4-Cl | Me | 9 | 3a | 90 | 90 |
2 | H | 4-Cl | Et | 24 | 3b | 89 | 86 |
3 | H | 4-Cl | nBu | 24 | 3c | 92 | 87 |
4 | H | 4-Cl | Bn | 36 | 3d | 94 | 88 |
5 | H | 4-Cl | tBu | 24 | 3e | 97 | 93 |
6 | H | H | tBu | 30 | 3f | 85 (96) | 92 |
7 | H | 4-NO2 | tBu | 24 | 3g | 74 (99) | 96 |
8 | H | 4-Br | tBu | 24 | 3h | 94 | 94 |
9 | H | 4-F | tBu | 24 | 3i | 91 | 90 |
10 | H | 4-Me | tBu | 36 | 3j | 80 (93) | 93 |
11 | H | 3-Br | tBu | 24 | 3k | 91 | 90 |
12 | H | 2-Br | tBu | 24 | 3l | 70 (93) | 98 |
13 | 6-Br | 4-Cl | tBu | 48 | 3m | 70 (89) | 94 |
14 | 7-Br | 4-Cl | tBu | 48 | 3n | 72 (87) | 95 |
15 | 7-OMe | 4-Cl | tBu | 48 | 3o | 83 (98) | 90 |
Entry | R1 | R2 | R3 | Time/h | 3 | Yieldb/% | eec/% |
---|---|---|---|---|---|---|---|
1 | H | 4-Cl | Me | 9 | 3a | 90 | 90 |
2 | H | 4-Cl | Et | 24 | 3b | 89 | 86 |
3 | H | 4-Cl | nBu | 24 | 3c | 92 | 87 |
4 | H | 4-Cl | Bn | 36 | 3d | 94 | 88 |
5 | H | 4-Cl | tBu | 24 | 3e | 97 | 93 |
6 | H | H | tBu | 30 | 3f | 85 (96) | 92 |
7 | H | 4-NO2 | tBu | 24 | 3g | 74 (99) | 96 |
8 | H | 4-Br | tBu | 24 | 3h | 94 | 94 |
9 | H | 4-F | tBu | 24 | 3i | 91 | 90 |
10 | H | 4-Me | tBu | 36 | 3j | 80 (93) | 93 |
11 | H | 3-Br | tBu | 24 | 3k | 91 | 90 |
12 | H | 2-Br | tBu | 24 | 3l | 70 (93) | 98 |
13 | 6-Br | 4-Cl | tBu | 48 | 3m | 70 (89) | 94 |
14 | 7-Br | 4-Cl | tBu | 48 | 3n | 72 (87) | 95 |
15 | 7-OMe | 4-Cl | tBu | 48 | 3o | 83 (98) | 90 |
[1] |
For selected reviews, see: (a) Casiraghi G.; Battistini, L.; Curti, C.; Rassu, G.; Zanardi, F. Chem. Rev. 2011, 111, 3076.
doi: 10.1021/cr100304n pmid: 21434642 |
(b) Battistini L.; Curti C.; Rassu G.; Sartori A.; Zanardi F. Synthesis 2017, 49, 2297.
doi: 10.1055/s-0036-1589487 pmid: 21434642 |
|
(c) Ye J.-L.; Huang P.-Q. Chin. J. Org. Chem., 2018, 38, 2215. (in Chinese)
doi: 10.6023/cjoc201806005 pmid: 21434642 |
|
(叶剑良, 黄培强, 有机化学, 2018, 38, 2215).
doi: 10.6023/cjoc201806005 pmid: 21434642 |
|
(d) Cordes M.; Kalesse M. Molecules 2019, 24, 3040.
doi: 10.3390/molecules24173040 pmid: 21434642 |
|
(e) Curti C.; Battistini L.; Sartori A.; Zanardi F. Chem. Rev. 2020, 120, 2448.
doi: 10.1021/acs.chemrev.9b00481 pmid: 21434642 |
|
(f) D'Amato A.; Sala G. D. Catalysts 2021, 11, 1545.
doi: 10.3390/catal11121545 pmid: 21434642 |
|
(g) Zhang H.-J.; Zhong F.; Xie Y.-C.; Yin L. Chin. J. Chem. 2021, 39, 55.
doi: 10.1002/cjoc.v39.1 pmid: 21434642 |
|
[2] |
(a) Cui H.-L.; Peng J.; Feng X.; Du W.; Jiang K.; Chen Y.-C. Chem. Eur. J. 2009, 15, 1574.
doi: 10.1002/chem.v15:7 |
(b) Cui H.-L.; Huang J.-R.; Lei J.; Wang Z.-F.; Chen S.; Wu L.; Chen Y.-C. Org. Lett. 2010, 12, 720.
doi: 10.1021/ol100014m |
|
(c) Peng J.; Huang X.; Cui H.-L.; Chen. Y.-C. Org. Lett. 2010, 12. 4260.
doi: 10.1021/ol101668z |
|
(d) Jiang L.; Lei Q.; Huang X.; Cui H.-L.; Zhou X.; Chen Y.-C. Chem. Eur. J. 2011, 17, 9489.
doi: 10.1002/chem.v17.34 |
|
(e) Huang X.; Peng J.; Dong L.; Chen Y.-C. Chem. Commun. 2012, 48, 2439.
doi: 10.1039/c2cc17777c |
|
[3] |
(a) Zhao S.; Zhao Y.-Y.; Lin J.-B.; Xie T.; Liang Y.-M.; Xu P.-F. Org. Lett. 2015, 17, 3206.
doi: 10.1021/acs.orglett.5b01066 pmid: 32040920 |
(b) Kang T.-C.; Zhao X.; Sha F.; Wu X.-Y. RSC Adv. 2015, 5, 74170.
doi: 10.1039/C5RA14667D pmid: 32040920 |
|
(c) Kayal S.; Mukherjee S. Org. Lett. 2017, 19, 4944.
doi: 10.1021/acs.orglett.7b02421 pmid: 32040920 |
|
(d) Zhang J.-Y.; Wu H.-H.; Zhang J.-L. Org. Lett. 2017, 19, 6080.
doi: 10.1021/acs.orglett.7b02895 pmid: 32040920 |
|
(e) Kowalczyka D.; Albrecht Ł. Adv. Synth. Catal. 2018, 360, 406.
doi: 10.1002/adsc.v360.3 pmid: 32040920 |
|
(f) Kowalczyk-Dworak D.; Kwit M.; Albrecht Ł. J. Org. Chem. 2020, 85, 2938.
doi: 10.1021/acs.joc.9b02530 pmid: 32040920 |
|
[4] |
Nasborg L.; Halskov.; K. S. Tur, F.; Mønsted, S. M. N.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2015, 54, 10193.
doi: 10.1002/anie.201504749 |
[5] |
(a) Sarkar R.; Mitra S.; Mukherjee S. Chem. Sci. 2018, 9, 5767.
doi: 10.1039/c8sc02041h pmid: 31247781 |
(b) Shi C.-Y.; Xiao J.-Z.; Yin L. Chem. Commun. 2018, 54, 11957.
doi: 10.1039/C8CC07249C pmid: 31247781 |
|
(c) Sarkar R.; Mukherjee S. Org. Lett. 2019, 21, 5315.
doi: 10.1021/acs.orglett.9b01934 pmid: 31247781 |
|
(d) Dai Y.-W.; Tian B.-T.; Chen H.; Zhang Q. ACS Catal. 2019, 9, 2909.
doi: 10.1021/acscatal.9b00336 pmid: 31247781 |
|
[6] |
For selected reviews, see: (a) Musa M. A.; Cooperwood, J. S.; Khan, M. O. F. Curr. Med. Chem. 2008, 15, 2664.
doi: 10.2174/092986708786242877 |
(b) Keri R. S.; Sasidhar B. S.; Nagaraja B. M.; Santos M. A. Eur. J. Med. Chem. 2015, 100, 257.
doi: 10.1016/j.ejmech.2015.06.017 |
|
(c) Thakur A.; Singla R.; Jaitak V. Eur. J. Med. Chem. 2015, 101, 476.
doi: 10.1016/j.ejmech.2015.07.010 |
|
(d) Medina F. G.; Marrero J. G.; Macías-Alonso M.; González M. C.; Córdova-Guerrero I.; Teissier García A. G.; Osegueda- Robles S. Nat. Prod. Rep. 2015, 32, 1472.
doi: 10.1039/C4NP00162A |
|
(e) Grover J.; Jachak S. M. RSC Adv. 2015, 5, 38892.
doi: 10.1039/C5RA05643H |
|
(f) Stefanachi A.; Leonetti F.; Pisani L.; Catto M.; Carotti A. Molecules 2018, 23, 250.
doi: 10.3390/molecules23020250 |
|
[7] |
Huang X.; Wen Y.-H.; Zhou F.-T.; Chen C.; Xu D.-C.; Xie J.-W. Tetrahedron Lett. 2010, 51, 6637.
doi: 10.1016/j.tetlet.2010.10.055 |
[8] |
Loh C. C. J.; Schmid M.; Peters B.; Fang X.; Lautens M. Angew. Chem., Int. Ed. 2016, 55, 4600.
doi: 10.1002/anie.v55.14 |
[9] |
(a) Wang J.; Zhang S.; Ding W.; Wang C.; Chen J.; Cao W.; Wu X. ChemCatChem 2020, 12, 444.
doi: 10.1002/cctc.v12.2 |
(b) Yoshida Y.; Mino T.; Sakamoto M. ACS Catal. 2021, 11, 13028.
doi: 10.1021/acscatal.1c04070 |
|
(c) Singh S.; Saini R.; Singh R. P. J. Org. Chem. 2022, 88, 7712.
doi: 10.1021/acs.joc.2c02142 |
|
[10] |
Xu H.; Laraia L.; Schneider L.; Louven K.; Strohmann C.; Antonchick A. P.; Waldmann, Angew. Chem., Int. Ed. 2017, 56, 11232.
doi: 10.1002/anie.v56.37 |
[11] |
For selected reviews, see: (a) Wei Y.; Shi, M. Chem. Asian J. 2014, 9, 2720.
doi: 10.1002/asia.201402109 |
(b) Sun Y.-L.; Wei Y.; Shi M. ChemCatChem 2017, 9, 718.
doi: 10.1002/cctc.v9.5 |
|
(c) Nallapati S. B.; Chuang S.-C. Asian J. Org. Chem. 2018, 7, 1743.
doi: 10.1002/ajoc.v7.9 |
|
(d) Ni H.-Z.; Chan W.-L.; Lu Y.-X. Chem. Rev. 2018, 118, 9344.
doi: 10.1021/acs.chemrev.8b00261 |
|
(e) Guo H.-C.; Fan Y.-C.; Sun Z.-H.; Wu Y.; Kwon O. Chem. Rev. 2018. 118, 10049.
doi: 10.1021/acs.chemrev.8b00081 |
|
(f) Moreira N. M.; Martelli L. S. R.; Corrêa A. G. Beilstein J. Org. Chem. 2021, 17, 1952.
doi: 10.3762/bjoc.17.128 |
|
[12] |
(a) Yuan K.; Zhang L.; Song H.-L.; Hu Y.; Wu X.-Y. Tetrahedron Lett. 2008, 49, 6262.
doi: 10.1016/j.tetlet.2008.08.042 |
(b) Qian J.-Y.; Wang C.-C.; Sha F.; Wu X.-Y. RSC Adv. 2012, 2, 6042.
doi: 10.1039/c2ra20521a |
|
(c) Wang G.; Rexiti R.; Sha F.; Wu X.-Y. Tetrahedron 2015, 71, 4255.
doi: 10.1016/j.tet.2015.04.076 |
|
[13] |
Cai J.; Zhou Z.; Zhao G.; Tang C. Org. Lett. 2002, 4, 4723.
doi: 10.1021/ol027197f |
[1] | 杨爽, 房新强. 氮杂环卡宾催化实现的动力学拆分近期研究进展[J]. 有机化学, 2024, 44(2): 448-480. |
[2] | 陈宛婷, 钟雄威, 邢佳乐, 吴昌书, 高杨. C—N轴手性化合物的不对称催化合成研究进展[J]. 有机化学, 2024, 44(2): 349-377. |
[3] | 姜权彬. 经由氮杂邻联烯醌中间体合成轴手性化合物的研究进展[J]. 有机化学, 2024, 44(1): 159-172. |
[4] | 罗诚, 尹艳丽, 江智勇. P-手性膦氧化物的不对称合成研究进展[J]. 有机化学, 2023, 43(6): 1963-1976. |
[5] | 全翌雯, 蒋心惠, 李文军, 汪舰. 借助有机催化去共轭-羟醛缩合反应来获得α-乙烯基-β-炔基取代的烯醛[J]. 有机化学, 2023, 43(6): 2120-2125. |
[6] | 景科, 张攀科, 徐森苗. 1,4-氮硼杂芳环在有机和过渡金属催化中的应用[J]. 有机化学, 2023, 43(5): 1742-1750. |
[7] | 张心予, 耿慧慧, 张士磊, 王卫, 陈晓蓓. 一种N-杂环卡宾催化合成氘代苯偶姻的方法[J]. 有机化学, 2023, 43(4): 1510-1516. |
[8] | 戴春波, 夏思奇, 陈晓玉, 杨丽敏. 氮杂环卡宾(NHC)催化[4+3]环加成反应构建4-氨基苯并环庚烯内酯[J]. 有机化学, 2023, 43(3): 1084-1090. |
[9] | 王海清, 杨爽, 张宇辰, 石枫. 邻羟基苄醇参与的催化不对称反应研究进展[J]. 有机化学, 2023, 43(3): 974-999. |
[10] | 曹伟地, 刘小华. 不对称催化质子化构建α-叔碳羰基化合物研究进展[J]. 有机化学, 2023, 43(3): 961-973. |
[11] | 方思强, 刘赞娇, 王天利. Atherton-Todd反应的研究进展[J]. 有机化学, 2023, 43(3): 1069-1083. |
[12] | 张雨杉, 桓臻, 杨金东, 程津培. 氮杂环磷氢试剂的氢转移活性研究进展[J]. 有机化学, 2023, 43(11): 3806-3825. |
[13] | 赵佳怡, 葛怡聪, 何川. 不对称催化Si—H/X—H脱氢偶联构筑硅中心手性[J]. 有机化学, 2023, 43(10): 3352-3366. |
[14] | 曾燕, 叶飞. 不对称催化构建硅立体中心化合物的新反应体系研究进展[J]. 有机化学, 2023, 43(10): 3388-3413. |
[15] | 代增进, 张绪穆, 殷勤. 铵盐为胺源的不对称还原胺化反应研究进展[J]. 有机化学, 2022, 42(8): 2261-2274. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||