有机化学 ›› 2020, Vol. 40 ›› Issue (11): 3738-3747.DOI: 10.6023/cjoc202003022 上一篇    下一篇

所属专题: 有机电合成虚拟专辑 创刊四十周年专辑

综述与进展

过渡金属催化的不对称电化学进展

王向阳a, 徐学涛a, 王振华b, 方萍b, 梅天胜b   

  1. a 五邑大学生物科技与大健康学院 广东江门 529020;
    b 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 分子合成科学卓越中心 上海 200032
  • 收稿日期:2020-03-09 修回日期:2020-05-24 发布日期:2020-05-28
  • 通讯作者: 方萍, 梅天胜 E-mail:mei7900@sioc.ac.cn;pfang@sioc.ac.cn
  • 基金资助:
    中国科学院战略性先导科技专项(No.XDB20000000)、国家自然科学基金(Nos.91956112,21572245,21772222,21772220)和上海市科委基础研究(Nos.17JC1401200,18JC1415600)资助项目.

Advances in Asymmetric Organotransition Metal-Catalyzed Electrochemistry

Wang Xiangyanga, Xu Xuetaoa, Wang Zhenhuab, Fang Pingb, Mei Tianshengb   

  1. a School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangzhou 529020;
    b State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
  • Received:2020-03-09 Revised:2020-05-24 Published:2020-05-28
  • Supported by:
    Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000), the National Natural Science Foundation of China (Nos. 91956112, 21572245, 21772222, 21772220), and the Program of Shanghai Science and Technology Committee of Shanghai (Nos. 17JC1401200, 18JC1415600).

总结了近年来过渡金属催化的不对称电化学进展.过渡金属催化的不对称电化学(AOMCE)分为氧化和还原反应.在氧化反应方面,发展了烯烃的不对称官能团化,二级醇或醛的动力学拆分以及碳氢键的不对称官能团化反应.在还原反应部分包括二氧化碳的不对称电化学羧化、不对称电化学脱羧反应以及不对称还原偶联反应.手性配体和过渡金属催化剂与电化学体系的结合构成了一个非常新颖的反应体系,为解决传统有机电化学合成中立体选择性控制的难题,提供了一条新途径.

关键词: 过渡金属催化的不对称电化学, 有机电化学合成, 不对称催化

The recent developments in asymmetric organotransition metal-catalyzed electrochemistry (AOMCE) are summarized. AOMCE processes can be divided into oxidative and reductive variants. In terms of oxidations, asymmetric functionalization of olefins, oxidative kinetic resolution of secondary alcohols or aldehydes, and asymmetric C—H functionalization reactions have been developed. Reductive processes discussed include asymmetric electrochemical carboxylation with carbon dioxide, asymmetric electrochemical decarboxylation, and asymmetric reductive coupling reactions. The combination of chiral ligands, transition-metal catalysts, and electrochemistry provides a novel angle by which to address the longstanding fundamental challenge of stereoinduction in traditional electrochemical organic synthesis.

Key words: asymmetric organotransition metal-catalyzed electrochemistry, electrochemical organic synthesis, asymmetric catalysis